| 67 | 0 | 114 |
| 下载次数 | 被引频次 | 阅读次数 |
目的:热物性参数和产热特性表征是热管理系统设计与优化的基础。本研究聚焦锂离子电容器充放电过程的热特性,通过测定比热容、导热系数等关键热物性参数,构建产热-传热耦合模型。方法:采用等温量热法测量锂离子电容器充放电产热量,绝热量热法测量比热容,三维数据反演法测量导热系数,结合实验数据验证模型在不同工况下的温升预测精度。结果:锂离子电容器充放电产热量随充放电倍率增大而增大,随温度升高呈先降后升趋势。当温度从5℃上升至60℃,比热容从931.7 J/(kg·℃)增大至1 180.4 J/(kg·℃)。导热系数随温度升高呈先升后降趋势。在不同恒定电流放电过程中,固定测温点的仿真结果与实测结果偏差在±0.3℃内。结论:基于实测热物性参数构建的产热-传热耦合模型能够比较准确地预测锂离子电容器在恒流放电时的温升,可用于热管理系统的设计和仿真优化。
Abstract:Aims: The thermophysical parameters and the heat generation characteristics are fundamental for the development of the thermal management system. This study focuses on the thermal behavior of lithium-ion capacitors during charge-discharge processes and establishes a heat generation-transport coupling model by measuring key thermophysical parameters including the specific heat capacity and the thermal conductivity. Methods: The heat generation of lithium-ion capacitors during charging and discharging precesses was measured by isothermal calorimetry. The specific heat capacity was measured by adiabatic calorimetry. The thermal conductivity was measured by the three-dimensional data inversion method. The model's accuracy under various operating conditions was validated through comparative analysis with experimental heat generation data. Results: The heat generation during the charging and discharging of lithium-ion capacitors increased with current increase and decreased firstly then increased and then increasing with the increase of temperature. When the temperature rose from 5 ℃ to 60 ℃, the specific heat capacity of lithium-ion capacitors increased from 931.7 J/(kg·℃) to 1 180.4 J/(kg·℃). The thermal conductivity increased first and then decreased with the increase of temperature. When the lithium-ion capacitor discharged at different currents, the deviation between the simulation and the measured results at fixed monitoring points was within ±0.3 ℃. Conclusions: The heat generation of lithium-ion capacitors during charging and discharging varies with the current and temperature. The specific heat capacity and the thermal conductivity are influenced by temperature. The coupling model established using measured thermophysical parameters can accurately predict the temperature rise of lithium-ion capacitors during constant current discharging and can be used for design and simulation optimization of thermal management systems.
[1] DANIAL K,HAMIDREZA B,JOERI M V,et al.A comprehensive review of lithium-ion capacitor technology:Theory,development,modeling,thermal management systems,and applications[J].Molecules,2022,27(10):3119-3119.
[2] LI B,ZHENG J S,ZHANG H Y,et al.Electrode materials,electrolytes,and challenges in nonaqueous lithium-ion capacitors[J].Advanced Materials,2018,30(17):1705670.
[3] JIN L M,SHEN C,SHELLIKERI A,et al.Progress and perspectives on pre-lithiation technologies for lithium ion capacitors[J].Energy & Environmental Science,2020,13(8):2341-2362.
[4] DANIAL K,HAMIDREZA B,MOHSEN A,et al.A novel air-cooled thermal management approach towards high-power lithium-ion capacitor module for electric vehicles[J].Energies,2021,14(21):7150-7150.
[5] MAHDI S,HAMIDREZA S B.A comprehensive review of lithium ion capacitor:Development,modelling,thermal management and applications[J].Journal of Energy Storage,2021,34:102019.
[6] 张耀升,刘志恩,孙现众,等.软包锂离子电容器放电过程热模拟[J].储能科学与技术,2019,8(5):922-929.ZHANG Y S,LIU Z E,SUN X Z,et al.Thermal simulation for lithium-ion capacitor during discharge process[J].Energy Storage Science and Technology,2019,8(5):922-929.
[7] 闵凡奇,吕桃林,付诗意,等.锂离子电容器的热特性及热模型[J].储能科学与技术,2022,11(8):2629-2636.MIN F Q,LV T L,FU S Y,et al.Thermal characteristics and model of lithium-ion capacitor[J].Energy Storage Science and Technology,2022,11(8):2629-2636.
[8] XU J X,WU J X,DING J,et al.Research on heat generation measurement for lithium-ion battery using isothermal calorimeter[J].IEEE Transactions on Transportation Electrification,2023,9(2):2409-2418.
[9] 魏仁川,许金鑫,丁炯.锂离子电池热参数快速测量方法研究[J].中国测试,2025,51(5):20-26.WEI R C,XU J X,DING J.Research on rapid measurement of thermal parameters of lithium-ion battery[J].China Measurement & Test,2025,51(5):20-26.
[10] 单博学,吴育新,许启跃,等.差示绝热追踪的锂电池比热容测试方法研究[J].电源技术,2021,45(5):606-610,640.SHAN B X,WU Y X,XU Q Y,et al.Research on specific heat capacity test method of lithium battery based on differential adiabatic tracking[J].Chinese Journal of Power Sources,2021,45(5):606-610,640.
[11] 邓云彪,王晓娜,杨遂军,等.基于热电制冷器的真空高精度温度控制系统[J].中国计量大学学报,2022,33(3):317-323.DENG Y B,WANG X N,YANG S J,et al.A high precision vacuum temperature control system based on thermoelectric coolers[J].Journal of China University of Metrology,2022,33(3):317-323.
[12] 董泽文,侯德鑫,叶树亮.基于热成像的软包锂电池导热系数测试方法[J].计量学报,2021,42(12):1597-1603.DONG Z W,HOU D X,YE S L.Test method of thermal conductivity of pouch lithium-ion cell based on thermography[J].Acta Metrologica Sinica,2021,42(12):1597-1603.
[13] 沈延群,乔卫平.牛顿公式中换热系数的确定[J].实验室科学,2004(1):57-59.SHEN Y Q,QIAO W P.Defined coefficient of heat transfer in Newton formula[J].Laboratory Science,2004(1):57-59.
[14] 臧锦旗,李天乐,赵久成,等.COMSOL在锂离子电池热特性方面的研究进展[J].能源研究与利用,2022(5):42-46.ZANG J Q,LI T L,ZHAO J C,et al.Process in COMSOL research on the thermal properties of lithium-ion batteries[J].Energy Research & Utilization,2022(5):42-46.
基本信息:
DOI:
中图分类号:TM53
引用信息:
[1]杨楚舒,邱文泽,耿悦,等.锂离子电容器充放电过程热特性测试及建模研究[J].中国计量大学学报,2025,36(02):169-177.
基金信息: