nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.36 290-297
基于机器学习的高精度低阶数值格式研究
基金项目(Foundation): 国家自然科学基金项目(No.11872353)
邮箱(Email): mzyu@cjlu.edu.cn;
DOI:
摘要:

目的:针对高精度数值计算对资源需求越来越高的问题,提出一种基于机器学习的高效率数值计算优化方法。方法:采用龙格-库塔(R-K)法框架,使用高阶R-K法获得粒子运动轨迹数据;再以高阶数据为训练目标,通过神经网络算法提取影响计算精度的权重系数;最后将权重系数应用到低阶R-K法。结果:数值实验结果表明,经过机器学习优化的低阶R-K法,在与四阶R-K法相同计算精度情况下,求解速度比高阶方法提高三个数量级。结论:机器学习与传统数值方法的结合展现出强大的协同效应,能够在保持高精度的同时,显著提升计算效率。

Abstract:

Aims: Aiming at the problem of increasingly high resource requirements for high-precision numerical calculations, an efficient numerical calculation optimization method based on machine learning is proposed. Methods: The framework adopted the Runge-Kutta(R-K) method. The high-order R-K method was first used to obtain particle trajectory data. Then, by taking the high-order data as the training target, a neural network algorithm was employed to extract weight coefficients that influenced calculation accuracy. Finally, the weight coefficients were applied to the low-order R-K method. Results: Numerical experiment results showed that the low-order R-K method optimized by machine learning achieved the same calculation accuracy as the fourth-order R-K method, while the solution speed was improved by three orders of magnitude compared with the high-order method. Conclusions: The combination of machine learning and traditional numerical methods demonstrates a strong synergistic effect, which can significantly improve computational efficiency while maintaining high accuracy.

参考文献

[1] 沈奇,姜万顺,王奕鹏,等.深度学习在新型冠状病毒诊断中的研究综述[J].中国计量大学学报,2024,35(1):68-79.SHEN Q,JIANG W S,WANG Y P,et al.A review of deep learning in the diagnosis of novel coronavirus[J].Journal of China University of Metrology,2024,35(1):68-79.

[2] CHRISTOPHER J,GUZIK S M,GAO X.High-order implicit-explicit additive Runge-Kutta schemes for numerical combustion with adaptive mesh refinement[J].International Journal for Numerical Methods in Fluids,2022,94(8):12-16.

[3] RAPTIS A D,CASH J R.A variable step method for the numerical integration of the one-dimensional Schrdinger equation[J].Computer Physics Communications,1985,36(2):113-119.

[4] CROCI M,SOUZA G R D.Mixed-precision explicit stabilized Runge-Kutta methods for single-and multi-scale differential equations[J].Journal of Computational Physics,2022,464:111349.

[5] FIGUEROA A,JACKIEWICZ Z,LOHNER R.Explicit two-step Runge-Kutta methods for computational fluid dynamics solvers[J].International Journal for Numerical Methods in Fluids,2021,93(2):830-836.

[6] GEITANI T E,GOLSHAN S,BLAIS B.A high-order stabilized solver for the volume averaged Navier-Stokes equations[J].International Journal for Numerical Methods in Fluids,2023,72:19-26.

[7] NIELSEN R F,NAZEMZADEH N,SILLESEN L W,et al.Hybrid machine learning assisted modelling framework for particle processes[J].Computers & Chemical Engineering,2020,140:106916.

[8] NORDSTR M J,MATTSSON K,SWANSON C.Boundary conditions for a divergence free velocity-pressure formulation of the Navier-Stokes equations[J].Journal of Computational Physics,2007,225(1):874-890.

[9] OKONKWO O,PATEL R,GUDI R,et al.A machine learning based approach to solve the aerosol dynamics coagulation model[J].Aerosol Science and Technology,2023,57(11):276-284.

[10] WANG Y,LI S,ZHANG B.General regression neural network-based data-driven model-free predictive functional control for a class of discrete-time nonlinear systems[J].Nonlinear Dynamics,2022,107(1):953-966.

[11] QIU W X,SI Z Z,MOU D S,et al.Data-driven vector degenerate and nondegenerate solitons of coupled nonlocal nonlinear Schr?dinger equation via improved PINN algorithm[J].Nonlinear Dynamics,2025,113(5):4063-4076.

[12] TOSCANO D J,OOMMEN V,VARGHESE J A,et al.From PINNs to PIKANs:Recent advances in physics-informed machine learning[J].Machine Learning for Computational Science and Engineering,2025(1):15.

[13] KOMALA C R,JEYAKUMAR S,DEEPIKA G,et al.IoT Integration with CMPA-PINN for islanding detection through microgrid hierarchical control[J].International Journal of Communication Systems,2025,38(4):136-153.

[14] PARK J,KIM W Y,JEON J H.Machine learning-driven innovations in microfluidics[J].Biosensors,2024,14(12):613.

[15] ARDIZZON F,CASARI P,TOMASIN S.A RNN-based approach to physical layer authentication in underwater acoustic networks with mobile devices[J].Computer Networks,2024,243:110311.

[16] ZHANG J R,ZHANG J,LOK T M,et al.A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training[J].Applied Mathematics & Computation,2007,185(2):1026-1037.

基本信息:

DOI:

中图分类号:TP181

引用信息:

[1]杨轲钧,于明州.基于机器学习的高精度低阶数值格式研究[J].中国计量大学学报,2025,36(02):290-297.

基金信息:

国家自然科学基金项目(No.11872353)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文