nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.36 26-34
声空化条件下传动液压力传递特性
基金项目(Foundation): 浙江省自然科学基金项目(No.LY14E050023); 浙江省基础公益研究计划项目(No.LGG21E050005); 浙江省科技计划重点项目(No.2019C01128,2023C01163)
邮箱(Email): cyh2021cjlu@163.com;
DOI:
摘要:

目的:研究在声空化条件下,用含有空气和蒸汽的ISO4113试验油作为传动液,其压力传递特性及影响因素。方法:建立传动液在声空化条件下的压力传递数学模型,分析管内传动液压力的频率响应特性和传递函数;同时,结合流场参数的动态变化,分析沿管道轴向方向的动态响应特性,探讨管径、含气率和温度对管内传动液压力传递特性的影响。结果:当管内传动液与凸轮轴的激励产生谐振时,谐振频率为60 Hz时的幅值比最高可达55 dB。在200~1 000 Hz频率范围内,幅值比稳定在1~3 dB之间,液体传动系统响应保持稳定。尤其是频率在400~800 Hz范围内,系统逐渐达到一种相对稳定的动态平衡状态,仅有微小的相位差波动。在其他参数保持不变的条件下,幅值比随管径、初始含气率和初始温度减小而增大,而相位差几乎不变。结论:通过适当减小管径、降低初始含气率和控制初始温度等措施,可有效提高传动液压力传递效率。

Abstract:

Aims: This paper aims to investigate the pressure transfer characteristics and influencing factors of ISO4113 test oil containing air and steam as a transmission fluid under acoustic cavitation conditions. Methods: The mathematical model of pressure transfer in a liquid transmission tube under acoustic cavitation was established; and the frequency response characteristic and the transfer function of hydraulic pressure in pipelines were obtained. Furthermore, not only the dynamic response characteristics along the axial direction of pipelines, but also the influence of pipeline diameter, the void fraction and temperature on the pressure transfer of liquid transmission pipelines were analyzed, in combined with the dynamic variation of flow field parameters. Results: The transmission fluid in the tube resonated with the camshaft excitation; and the amplitude ratio could reach up to 55 dB at a resonance frequency of 60 Hz. Within the frequency range of 200~1 000 Hz, the amplitude ratio stabilized in the range of 1~3 dB; and the response of the fluid transmission system remained stable. Especially in 400~800 Hz, the system gradually reached a relatively stable dynamic equilibrium state, with only minor phase fluctuations. When other parameters were fixed, a decrease in the diameter, void fraction, and temperature will enhance the amplitude ratio with minimal impact on phase difference. Conclusions: The pressure transfer efficiency can be improved by reducing the pipeline diameter and its initial void fraction, thus controlling the initial temperature.

参考文献

[1] 叶警涛.液压支架长距离供液系统动力传递特性研究[D].徐州:中国矿业大学,2023:1-6.YE J T.Research on Power Transmission Characteristics of Hydraulic Support Liquid Supply System with Long Distance[D].Xuzhou:China University of Mining and Technology,2023:1-6.

[2] 徐东涛,隋帆,彭思达,等.多级降压调节阀流激振动监测方法研究[J].液压与气动,2023(8):98-106.XU D T,SUI F,PENG S D,et al.Study on flow-induced vibration monitoring method through a multistage pressure reducing valve[J].Chinese Hydraulics & Pneumatics,2023(8):98-106.

[3] FERRARI A.Modelling approaches to acoustic cavitation in transmission pipelines[J].International Journal of Heat and Mass Transfer,2010,53(19-20):4193-4203.

[4] ZHENG G A,XU P,LI L,et al.Investigations of the formation mechanism and pressure pulsation characteristics of pipeline gas-liquid slug flows[J].Journal of Marine Science and Engineering,2024,12(4):590.

[5] 刘依,吕雅琪,聂德明.气泡在剪切作用下的运动特性研究[J].中国计量大学学报,2017,28(2):159-167.LIU Y,LU Y Q,NIE D M.Numerical research on bubble motion in shear flow[J].Journal of China University of Metrology,2017,28(2):159-167.

[6] 杨庆俊,董日治,罗小梅,等.车辆液压管路油液压力脉动传递规律研究[J].液压与气动,2021,45(7):135-142.YANG Q J,DONG R Z,LUO X M,et al.Pressure pulsation transmission paw of vehicle hydraulic system[J].Chinese Hydraulics & Pneumatics,2021,45(7):135-142.

[7] 桑勇,王意宾,刘鹏坤,等.三相交流液压系统动态特性与仿真研究[J].液压气动与密封,2023,43(6):5-10.SANG Y,WANG Y B,LIU P K,et al.The dynamic characteristics and simulation study of three-phase alternative hydraulic systems[J].Hydraulics Pneumatics & Seals,2023,43(6):5-10.

[8] 梁思伟,李孝禄,朱俊江,等.汽车含气制动液的有效体积弹性模量的研究[J].中国计量大学学报,2017,28(4):454-459.LIANG S W,LI X L,ZHU J J,et al.Research on effective bulk modulus of brake fluid with air containing in automobile brake system[J].Journal of China University of Metrology,2017,28(4):454-459.

[9] 陈益宏,徐刚强,李孝禄,等.声空化条件下传动液中空气析出与溶解过程的研究[J].液压与气动,2022(9):53-62.CHEN Y H,XU G Q,LI X L,et al.Process of air evolution and dissolution in transmission fluid under acoustic cavitation[J].Chinese Hydraulics & Pneumatics,2022(9):53-62.

[10] 郑雅欣.声空化气泡的Gilmore-NASG模型及其动力学特性[D].通辽:内蒙古民族大学,2023:25-40.ZHENG Y X.Gilmore-NASG Model and Dynamic Characteristics of Acoustic Cavitation Bubble[D].Tongliao:Inner Mongolia Minzu Univercity,2023:25-40.

[11] 杨飞,胡鑫杰,李传宪,等.基于SPS软件的原油管道压力波传递特性分析[J].石油化工高等学校学报,2016,29(6):79-85.YANG F,HU X J,LI C X,et al.Analysis of pressure wave transmission characteristics for crude oil pipeline based on SPS software[J].Journal of Petrochemical Universities,2016,29(6):79-85.

[12] 李孝禄,孙毕.汽车ABS中气液两相流对制动压力的影响[J].汽车安全与节能学报,2012,3(3):218-224.LI X L,SUN B.Influence of gas-liquid two-phase flow on brake pressure in the anti-locked braking system of a vehicle[J].Journal of Automotive Safety and Energy,2012,3(3):218-224.

[13] 王均宇,张克鹏,宋永兴,等.短管节流阀的空化流动与噪声的数值模拟分析[J].机床与液压,2023,51(13):178-183.WANG J Y,ZHANG K P,SONG Y X,et al.Numerical simulation analysis of cavitation flow and noise in short pipe throttle valve[J].Machine Tool & Hydraulics,2023,51(13):178-183.

[14] 陈益宏,许沧粟,李孝禄,等.声空化条件下传动液体积弹性模量的时空演变[J].机床与液压,2024,52(3):149-155.CHEN Y H,XU C S,LI X L,et al.Spatiotemporal evolution of bulk elastic modulus of transmission fluid under acoustic cavitation[J].Machine Tool & Hydraulics,2024,52(3):149-155.

[15] ASNAGHI A,FEYMARK A,BENSOW R E.Improvement of cavitation mass transfer modeling based on local flow properties[J].International Journal of Multiphase Flow,2017,93:142-157.

[16] 朱离垚.基于分布参数模型的翅片管换热器稳态仿真软件开发[D].杭州:浙江大学,2023:22-40.ZHU L Y.Software Development of Steady-State Simulation of Fin-and-Tube Heat Exchangers Based on Distributed Parameter Model[D].Hangzhou:Zhejiang University,2023:22-40.

[17] 王云鹤.压力伺服阀控缸系统动态特性及关键参数稳定性边界研究[D].秦皇岛:燕山大学,2023:14-37.WANG Y H.Research on Dynamic Characteristics and Key Parameter Stability Boundary of Pressure Servo Valve Control Cylinder System[D].Qinhuangdao:Yanshan University,2023:14-37.

基本信息:

DOI:

中图分类号:TH137

引用信息:

[1]王勇金,陈俊君,陈益宏等.声空化条件下传动液压力传递特性[J].中国计量大学学报,2025,36(01):26-34.

基金信息:

浙江省自然科学基金项目(No.LY14E050023); 浙江省基础公益研究计划项目(No.LGG21E050005); 浙江省科技计划重点项目(No.2019C01128,2023C01163)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文