nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2020, 03, v.31;No.99 370-377
基于CNN和注意力机制的微博情绪分析方法
基金项目(Foundation): 国家自然科学基金项目(No.61303146)
邮箱(Email):
DOI:
摘要:

目的:提高中文微博情绪分析的性能。方法:根据现有的情感资料构建了包含情感信息、情绪信息、词性信息的细粒度微博情感词典,将其与大规模文本预训练得到的词向量融合在一起构成情绪词向量。针对类别不平衡问题使用过采样方法来平衡样本,采用注意力机制构建微博文本和情绪词的语义表示,然后使用卷积神经网络模型提取特征,最后对微博文本进行情绪分类。结果:通过自然语言处理与中文计算会议(NLPCC)微博情绪分析公共数据集进行评测,与传统方法相比,该方法在宏平均、微平均和F值指标上均有提升。结论:使用CNN和注意力机制相结合的方法能够明显提升微博情绪分析任务的性能。

Abstract:

Aims: This paper studies the way to improve the performance of Chinese Weibo sentiment analysis. Methods: A fine-grained micro-blog emotion dictionary containing emotion information, sentiment information, and part-of-speech information was constructed based on the existing sentiment data; and it was combined with vectors obtained from large-scale text pre-training to form sentiment word vectors. For the problem of category imbalance, the oversampling method was used to balance the samples. The semantic mechanism of the microblog text and emotion words was constructed by the attention mechanism. Then the convolutional neural network model was used to extract features; and finally the emotion classification of the microblog text was established. Results: Compared with the traditional method, this method has been improved on the macro average, micro average and F value indicators by using natural language processing and the public data set of the Chinese Computing Conference(NLPCC) Weibo sentiment analysis. Conclusions: The combination of CNN and the attention mechanism can significantly improve the performance of Weibo sentiment analysis tasks.

参考文献

[1] 李然,林政,林海伦,等.文本情绪分析综述[J].计算机研究与发展,2018,55(1):30-52.LI R,LIN Z,LIN H L,et al.Text emotion analysis:a survey[J].Journal of Computer Research and Development,2018,55(1):30-52.

[2] Pang B,LEE L,VAITHYANATHAN S.Thumbs up?Sentiment classification using machine learning techniques[C]//Proceeding of the ACL-02 Conference on Empirical Methods in Natural Language Processing-Volume10.Philadelphia,USA:ACL,2002:79-86.

[3] AMAN S,SZPAKOWICZ S.Identifying expressions of emotion in text[C]//Proceeding of the 10th International Conference on Text,Speech and Dialogue.Berlin:Springer Berlin Heidelberg,2007:196-205.

[4] 姚源林,王树伟,徐睿峰,等.面向微博文本的情绪标注语料库构建[J].中文信息学报,2014,28(5):83-91.YAO Y L,WANG S W,XU R F,et al.The construction of an emotion annotated corpus on microblog text[J].Journal of Chinese Information Processing,2014,28(5):83-91.

[5] GAO K,XU H,WANG J S.A rule-based approach to emotion cause detection for Chinese micro-blogs[J].Expert Systems With Applications,2015,42(9):4517-4528.

[6] LI J T,CAO Y M,WANG Y D,et al.Online learning algorithms for double-weighted least squares twin bounded support vector machines[J].Neural Processing Letters,2016,45(1):1-21.

[7] ZHANG Y S,JIANG Y R,TONG Y X.Study of sentiment classification for Chinese microblog based on recurrent neural network[J].Chinese Journal of Electronics,2016,25(4):601-607.

[8] KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Proceeding.Doha,Qatar:ACL,2014:1746-1751.

[9] 张加加,王修晖.基于CNN与SVM融合的步态识别方法[J].中国计量大学学报,2019,30(1):65-71.ZHANG J J,WANG X H.Gait recognition method based on CNN and SVM fusion[J].Journal of China University of Metrology,2019,30(1):65-71.

[10] 李卫疆,漆芳.基于多通道双向长短期记忆网络的情感分析[J].中文信息学报,2019,33:119-128.LI W J,QI F.Sentiment analysis based on multi-channel bidirectional long short term memory network[J].Journal of Chinese Information Processing,2019,33:119-128.

[11] 赵容梅,熊熙,琚生根,等.基于混合神经网络的中文隐式情感分析[J].四川大学学报(自然科学版),2020,57(2):264-270.ZHAO R M,XIONG X,JU S G,et al.Implicit sentiment analysis for Chinese texts based on a hybrid neural network[J].Journal of Sichuan University(Natural Science Edition),2020,57(2):264-270.

[12] BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].Computer Science,2014,13(2):1-15.

[13] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Conference and Workshop on Neural Information Processing Systems.Long Beach,USA:NIPS,2017:5998-6008.

[14] LI W J,FANG Q M,YU Z T.Bidirectional LSTM with self-attention mechanism and multi-channel features for sentiment classification[J].Neurocomputing,2020,387:63-77.

[15] 徐琳宏,林鸿飞,潘宇,等.情感词汇本体的构造[J].情报学报,2008,27(2):180-185.XU L H,LIN H F,PAN Y,et al.Constructing the affective lexicon ontology[J].Journal of the China Society for Scientific and Technical Information.2008,27(2):180-185.

[16] LI S,ZHAO Z,HU R,et al.Analogical reasoning on Chinese morphological and semantic relations[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Melbourne,Australia:ACL,2018:138-143.

[17] QIU Y Y,LI H Z,LI S,et al.Revisiting correlations between intrinsic and extrinsic evaluations of word embeddings[C]//Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data.Cham,Switzerland:Springer International Publishing,2018:209-221.

[18] JIANG F,LIU Y Q,LUAN H,et al.Microblog sentiment analysis with emoticon space model[J].Journal of Computer Science and Technology,2015,30(5):1120-1129.

[19] 何炎祥,孙松涛,牛菲菲,等.用于微博情感分析的一种情感语义增强的深度学习模型[J].计算机学报,2017,40(4):773-790.HE Y X,SUN S T,NIU F F,et al.A deep learning model enhanced with emotion semantics for microblog sentiment analysis[J].Chinese Journal of Computers,2017,40(4):773-790.

[20] 张仰森,郑佳,黄改娟,等.基于双重注意力模型的微博情感分析方法[J].清华大学学报(自然科学版),2018,58(2):122-130.ZHANG Y S,ZHENG J,HUANG G J,et al.Microblog sentiment analysis method based on a double attention model[J].Journal of Tsinghua University(Science and Technology),2018,58(2):122-130.

基本信息:

DOI:

中图分类号:TP391.1;TP183

引用信息:

[1]陈欣,杨小兵,姚雨虹.基于CNN和注意力机制的微博情绪分析方法[J].中国计量大学学报,2020,31(03):370-377.

基金信息:

国家自然科学基金项目(No.61303146)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文