| 183 | 6 | 159 |
| 下载次数 | 被引频次 | 阅读次数 |
目的:研究不同化学计量学方法对烟草含水率近红外分析准确度的影响。方法:比较不同预处理方法(平滑、一阶、二阶、标准正态变量(SNV)和多元散射校正(MSC)及其组合)以及不同波长筛选方法(基于水分波段、基于波长区间、基于波长点)对预测模型性能的影响。结果:仅对数据进行SNV、MSC、MSC+一阶、MSC+SNV、SNV+一阶预处理的模型能够使不同程度的相对分析误差RPD提高,而其他方法则不同程度下降;在波长筛选方法方面,使用基于波长区间的方法能够获得较好的优化效果,经过变量筛选得到594个波长,为原波长数的27.26%,且能提高0.133 6的RPD值。结论:不同的计量学方法会对烟草含水率分析准确度产生影响,对于此次数据,应采用MSC预处理方法及基于波长区间筛选方法对数据进行处理。
Abstract:Aims: This paper aims to study the impact of different chemometric methods on the accuracy of the near-infrared analysis of tobacco moisture content. Methods: The effects of different preprocessing methods(smoothing, first-order, second-order, standard normal variable[SNV], multivariate scattering correction [MSC] and their combinations) as well as different wavelength screening methods(based on moisture bands, wavelength intervals, and wavelength points) on the performance of prediction models were compared. Results: Models that only performed SNV, MSC, MSC+first-order, MSC+SNV, SNV+first-order preprocessing on the data could achieve varying degrees of RPD improvement while other methods decreased to varying degrees. In terms of wavelength screening methods, using wavelength interval-based methods could achieve good optimization results. After variable screening, 594 wavelengths were obtained, which was 27.26% of the original number of wavelengths, and could improve the RPD value by 0.133 6. Conclusions: Different econometric methods will affect the accuracy of tobacco moisture content analysis. For this data, the MSC preprocessing method and the wavelength interval screening method should be used to process the data.
[1] OZAKI Y.Recent advances in molecular spectroscopy of electronic and vibrational transitions in condensed phase and its application to chemistry[J].Bulletin of the Chemical Society of Japan,2019,92(3):629-654.
[2] PARK J R.Trends in non-destructive analysis using near infrared spectroscopy in food industry[J].Food Science and Industry,2022,55(1):2-22.
[3] 王胜鹏,龚自明.近红外光谱技术的恩施玉露原产地鲜叶收购价格评估[J].中国计量大学学报,2016,27(2):167-171.WANG S P,GONG Z M.Evaluation of the purchase price of fresh leaves from EnshiYuluorigin using near infrared spectroscopy technology[J].Journal of China University of Metrology,2016,27(2):167-171.
[4] 褚小立,陈瀑,李敬岩,等.近红外光谱分析技术的最新进展与展望[J].分析测试学报,2020,39(10):1181-1188.CHU X L,CHEN P,LI J Y,et al.Recent progress and prospect of near infrared spectroscopy analysis[J].Journal of Analysis and Measurement,2020,39(10):1181-1188.
[5] ?ATALTA? ?,TUTUNCU K.A review of data analysis techniques used in near-infrared spectroscopy[J].Avrupa Bilimve Teknoloji Dergisi,2021(25):475-484.
[6] 莫敏,梁海玲,杨芳,等.烟草化学分析技术的应用及发展[J].化工管理,2020(27):53-54.MO M,LIANG H L,Yang F,et al.Application and development of tobacco chemical analysis technology [J].Chemical Management,2020(27):53-54.
[7] HAO Y,GENG P,WU W H,et al.Identification of rice varieties and transgenic characteristics based on near-infrared diffuse reflectance spectroscopy and chemometrics[J].Molecules,2019,24(24):4568(1-9).
[8] LI S L,SHAO Q S,LU Z H,et al.Rapid determination of crocins in saffron by near-infrared spectroscopy combined with chemometric techniques[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2018,190:283-289.
[9] 吴珽,梁龙,朱华,等.海南制浆树种中主要成分的近红外分析与模型优化[J].光谱学与光谱分析,2021,41(5):1404-1409.WU Y,LIANG L,ZHU H,et al.Near-infrared analysis and model optimization of main components of pulping tree species in Hainan[J].Spectroscopy and Spectral Analysis,2021,41(5):1404-1409.
[10] SONG D,GAO D H,SUN H,et al.Chlorophyll content estimation based on cascade spectral optimizations of interval and wavelength characteristics[J].Computers and Electronics in Agriculture,2021,189:106413(1-8).
[11] 张冬妍,付聪聪,李丹丹,等.基于近红外光谱的榛子蛋白质无损检测模型研究[J].激光与光电子学进展,2023,60(1):401-407.ZHANG D Y,FU C C,LI D D,et al.Nondestructive detection model of Hazelnut protein based on near infrared[J].Advances in Laser and Optoelectronics,2023,60(1):401-407.
[12] 苗雪雪,苗莹,龚浩如,等.特征波长优选结合近红外技术检测大米中的含水量[J].食品科技,2019,44(10):335-341.MIAO X X,MIAO Y,GONG H R,et al.Determination of water content in rice by characteristic wavelength optimization and near infrared technology[J].Food Science and Technology,2019,44(10):335-341.
[13] 洪期鸣.近红外水分仪的研究与优化设计[D].沈阳:东北大学,2018:32-33.HONG Q M.Research and Optimization Design of Near Infrared Moisture Meter[D].Shenyang:Northeastern University,2018:32-33.
[14] DHARMA S D,HABSHAH M,JAYANTHI A,et al.Automated fitting process using robust reliable weighted average on near infrared spectral data analysis[J].Symmetry,2020,12(12):2099(1-25).
[15] LI H D.Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J].Analytica Chimica Acta,2009,648:77-84.
[16] KUMAR K.Competitive adaptive reweighted sampling assisted partial least square analysis of excitation-emission matrix fluorescence spectroscopic data sets of certain polycyclic aromatic hydrocarbons-ScienceDirect[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2021,244:118874(1-8).
基本信息:
DOI:
中图分类号:O657.33;TS41
引用信息:
[1]俞思名,姚燕,刘颖,等.化学计量学方法选取对烟草含水率近红外分析准确度的影响[J].中国计量大学学报,2024,35(01):28-34.
基金信息:
国家自然科学基金项目(No.61673358); 河南中烟工业有限责任公司重点项目(No.A202053,RH202005)