370 | 1 | 253 |
下载次数 | 被引频次 | 阅读次数 |
目的:从氨基酸的侧链大小、带电性、二硫键的形成等方面研究氨基酸的亲疏水性质对蛋白质结构的影响。方法:利用VMD软件构建由不同亲疏水性氨基酸组成的蛋白质模型,并采用分子动力学方法对体系进行模拟。结果:体系键伸缩能与键弯曲能的大小仅与氨基酸的侧链原子数目有关,与氨基酸的亲疏水性质无明显相关性,但疏水型氨基酸构建的蛋白质链其范德华能低于亲水型氨基酸构建的蛋白质链。同时,氨基酸的亲疏水性质会直接影响蛋白质链的二级结构,通过对蛋白质链的均方根涨落和均方根偏差分析得到,疏水型氨基酸构建的蛋白质链能够维持稳定的α螺旋结构。结论:对氨基酸的亲疏水性质与蛋白质链能量及结构参数的关系的研究结果,可为后续进一步理解蛋白质的三级结构特征和动力学行为提供理论支持。
Abstract:Aims: This paper aims to study the effect of hydrophobicity of different amino acids, including the size of side chain, charged residue and disulfide bond, on the protein structures. Methods: The protein models with different hydrophilic or hydrophobic amino acids were constructed by VMD software; and the system was simulated by the molecular dynamics method. Results: Bond-stretching energy and bond-bending energy of the protein chain were not related to the hydrophobicity of the amino acids directly. Meanwhile, the VDW energy of the protein chains constructed by hydrophobic amino acids was lower than those constructed by hydrophilic amino acids. The hydrophobicity of amino acids could affect the secondary structure of protein chains. It was obtained by analyzing the root mean square fluctuation and root mean square deviation of the protein chain. The protein chains constructed by hydrophobic amino acids could maintain the α-helix structure during the simulations. Conclusions: The study of the relationship between the hydrophobicity of amino acids, the potential energy and the structure of proteins can provide theoretical support for the subsequent understanding of the conformation of protein and its application in biology.
[1] 胡敏.蛋白质结构的空间分布特征研究[D].杭州:浙江大学,2010:1-5.HU M.Research on Spatial Distribution Characteristics of Protein Structure[D].Hangzhou:Zhejiang University,2010:1-5.
[2] 马静,葛熙,昌增益.蛋白质功能研究:历史、现状和将来[J].生命科学,2007(3):294-300.MA J,GE X,CHANG Z Y.Research on protein function:History,current situation and future[J].Life Science,2007(3):294-300.
[3] 蒋英芝,贺连华,刘建军.蛋白质功能研究方法及技术[J].生物技术通报,2009(9):38-43.JIANG Y Z,HE L H,LIU J J.Methods and technologies for protein function research [J].Biotechnology Bulletin,2009(9):38-43.
[4] 滕志霞,郭茂祖.蛋白质功能预测方法研究进展[J].智能计算机与应用,2016,6(4):1-4,8.TENG Z X,GUO M Z.Research progress in protein function prediction methods[J].Intelligent Computers and Applications,2016,6(4):1-4,8.
[5] DEEDS E J,SHAKHNOVICH E I.A structure-centric view of protein evolution,design,and adaptation[J].Advances in Enzymology & Related Areas of Molecular Biology,2007,75-133.
[6] 李瑞芳,李宏.蛋白质折叠速率与其氨基酸序列极性的关系[J].生物信息学,2009,7(4):288-291.LI R F,LI H.The relationship between protein folding rate and the polarity of its amino acid sequence[J].Bioinformatics,2009,7(4):288-291.
[7] AFTABUDDIN M,KUNDU S.Hydrophobic,hydrophilic,and charged amino acid networks within protein[J].Biophysical Journal,2007,93(1):225-231.
[8] HAMZI H,RAJABPOUR A,ROLDáNé,et al.Learning the hydrophobic,hydrophilic,and aromatic character of amino acids from thermal relaxation and interfacial thermal conductance[J].The Journal of Physical Chemistry B,2022,126(3):670-678.
[9] 傅明川.氨基酸自身及氨基酸替代的邻近效应研究[D].咸阳:西北农林科技大学,2015:1-10.FU M C.Research on the Proximity Effect of Amino Acids Themselves and Amino Acid Aubstitutions[D].Xianyang:Northwest A&F University,2015:1-10.
[10] ALPHONSE U,杨套伟,苑曼曼,等.通过改造底物结合区氨基酸疏水性提高氨肽酶热稳定性[J].食品与生物技术学报,2020,39(3):9-15.ALPHONSE U,YANG T W,YUAN M M,et al.Improving the thermal stability of aminopeptidase by modifying the hydrophobicity of amino acids in the substrate binding region[J].Journal of Food and Biotechnology,2020,39(3):9-15.
[11] 殷开梁.分子动力学模拟的若干基础应用和理论[D].杭州:浙江大学,2006:2-10.YIN K L.Some Basic Applications and Theories of Molecular Dynamics Simulation[D].Hangzhou:Zhejiang University,2006:2-10.
[12] 薛峤.分子动力学模拟在生物大分子体系中的应用[D].长春:吉林大学,2014:16-23.XUE Q.Application of Molecular Dynamics Simulation in Biological Macromolecular Systems[D].Changchun:Jilin University,2014:16-23.
[13] 石赟.分子动力学模拟亲疏水氨基酸突变对2709蛋白酶结构稳定性的影响[D].太原:山西大学,2023:26-39.SHI Y.Effect of Molecular Dynamics Simulation of Hydrophilic and Hydrophobic Amino Acid Mutations on The Structural Stability of 2709 Protease[D].Taiyuan:Shanxi University,2023:26-39.
[14] HAMZI H,RAJABPOUR A,ROLDáN é,et al.Learning the hydrophobic,hydrophilic,and aromatic character of amino acids from thermal relaxation and interfacial thermal conductance[J].The Journal of Physical Chemistry B,2022,126(3):670-678.
[15] MOIN S T,HOFER T S,SATTAR R,et al.Molecular dynamics simulation of mammalian 15S-lipoxygenase with AMBER force field[J].European Biophysics Journal,2011,40:715-726.
[16] HSIN J,ARKHIPOV A,YIN Y,et al.Using VMD:an introductory tutorial[J].Current Protocols in Bioinformatics,2008,24(1):1-48.
[17] 金承昊,冯宙,姜舟婷.α螺旋结构影响蛋白质稳定性的模拟研究[J].中国计量大学学报,2023,34(2):265-270.JIN C H,FENG Z,JIANG Z T.Simulation study on the influence of α-helical structure on protein stability[J].Journal of China University of Metrology,2023,34(2):265-270.
[18] WEDEMEYER W J,WELKER E,NARAYAN M,et al.Disulfide bonds and protein folding[J].Biochemistry,2000,39(15):4207-4216.
[19] STONE J E,HYNNINEN A P,PHILLIPS J C,et al.Early experiences porting the NAMD and VMD molecular simulation and analysis software to GPU-accelerated OpenPOWER platforms[C]//High Performance Computing:ISC High Performance 2016 International Workshops,ExaComm,E-MuCoCoS,HPC-IODC,IXPUG,IWOPH,P^ 3MA,VHPC,WOPSSS.Frankfurt,Germany:Springer International Publishing,2016:188-206.
[20] 祝文涛.蛋白质动力学分子模拟及高效采样策略[D].南京:南京大学,2022:12-18.ZHU W T.Protein Dynamics Molecular Simulation and Efficient Sampling Strategy[D].Nanjing:Nanjing University,2022:12-18.
[21] KHALILI M,LIWO A,JAGIELSKA A,et al.Molecular dynamics with the united-residue model of polypeptide chains.Ⅱ.Langevin and Berendsen-bath dynamics and tests on model α-helical systems[J].The Journal of Physical Chemistry B,2005,109(28):13798-13810.
[22] KIM M,KIM E,LEE S,et al.New method for constant-npt molecular dynamics[J].The Journal of Physical Chemistry A,2019,123(8):1689-1699.
基本信息:
DOI:
中图分类号:Q51
引用信息:
[1]夏芳,冯宙,姜舟婷.分子动力学模拟研究氨基酸亲疏水性质对蛋白质结构的影响[J].中国计量大学学报,2024,35(03):415-421.
基金信息:
国家自然科学基金项目(No.21873087)