118 | 4 | 12 |
下载次数 | 被引频次 | 阅读次数 |
目的:研究金纳米颗粒的尺寸对全α型蛋白质1BBL的结构稳定性及构象转变过程的影响。方法:利用NAMD软件构建纳米颗粒和蛋白质相互作用模型,采用分子动力学对体系进行模拟。结果:对纳米颗粒和蛋白质复合体系的能量及蛋白质的结构进行分析表明,随着组成纳米颗粒尺寸的增加,金原子数目增多,蛋白质的结构稳定性减弱,蛋白质内部的氢键数目减少,回转半径增加,并伴有二级结构的转变。结论:对金纳米颗粒和蛋白质相互作用体系的研究,为理解蛋白质在纳米颗粒作用下的结构特征和动力学行为提供了理论支持。
Abstract:Aims: This paper aims to study the effect of Au-nanoparticles on the structural stability and conformational transition of the all-α protein 1 BBL. Methods: The simulation models were constructed by the NAMD software package. MD simulations were performed to investigate the Protein-NPs system. Results: According to the analysis of the energy and structural information, it was concluded that the conformational stability was weakened and the number of intra-protein hydrogen bonds was decreased with the increasing size of the nanoparticles. The radius of gyration Rg increased due to the more pair interactions between the atoms of the naonparticle and the ones of the protein. Our simulation results also clearly captured the structural transitions of the protein sample from helix to turn or random coil conformation induced by the increasing size of the Au-nanoparticles. Conclusions: The research conclusions provide a theoretical realization of understanding the conformational feature and the dynamic behavior of the protein with the effect of nanoparticles.
[1] SHEMETOV A A,NABIEV I,SUKHANOVA A.Molecular interaction of proteins and peptides with nanoparticles [J].ACS Nano,2012,6(6):4585-4602.
[2] 许志珍,晏晓敏,张杰,等.纳米颗粒与蛋白质分子的相互作用 [J].化学进展,2013,25(8):1383-1391.XU Z Z,YAN X M,ZHANG J,et al.Molecular interaction of nanoparticles with proteins [J].Progress in Chemistry,2013,25(8):1383-1391.
[3] KIM Y,KO S M,NAM J M.Protein-nanoparticle interaction-induced changes in protein structure and aggregation [J].Chemistry-An Asian Journal,2016,11(13):1869-1877.
[4] CASALS E,PFALLER T,DUSCHL A,et al.Hardening of the nanoparticle-protein corona in metal (Au,Ag)and oxide (Fe3O4,CoO,and CeO2)nanoparticles [J].Small,2011,7(24):3479-3486.
[5] LYNCH I,DAWSON K A.Protein-nanoparticle interactions [J].Nano Today,2008,3(1):40-47.
[6] LOK C N,ZOU T,ZHANG J J,et al.Controlled-release systems for metal-based nanomedicine:encapsulated/self-assembled nanoparticles of anticancer gold(III)/platinum(II)complexes and antimicrobial silver nanoparticles [J].Advanced Materials,2014,26(31):5550-5557.
[7] WU Y L,PUTCHA N,NG K W,et al.Biophysical responses upon the interaction of nanomaterials with cellular interfaces [J].Accounts of Chemical Research,2012,46(3):782-791.
[8] 张晓,杨蓉,王琛,等.功能化氧化石墨烯的细胞相容性 [J].物理化学学报,2012,28(6):1520-1524.ZHANG X,YANG R,WANG C,et al.Cell biocompatibility of functionalized graphene oxide [J].Acta Physico-Chimica Sinica,2012,28(6):1520-1524.
[9] WU W,WIECKOWSKI S,PASTORIN G,et al.Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes [J].Cheminform,2005,117(39):6516-6520.
[10] CHARCHAR P,CHRISTOFFERSON A J,TODOROVA N,et al.Understanding and designing the gold-bio interface:Insights from simulations [J].Small,2016,12(18):2395-2418.
[11] LIN Y,MCMAHON S J,SCARPELLI M,et al.Comparing gold nano-particle enhanced radiotherapy with protons,megavoltage photons and kilovoltage photons:A monte carlo simulation [J].Physics in Medicine and Biology,2014,59(24):7675-7689.
[12] DING H M,MA Y Q.Computer simulation of the role of protein corona in cellular delivery of nanoparticles [J].Biomaterials,2014,35(30):8703-8710.
[13] GUO X,WANG J,ZHANG J,et al.Conformational phase diagram for proteins absorbed on ultra-small nanoparticles studied by a structure-based coarse-grained model [J].Molecular Simulation,2015,41(14):1200-1211.
[14] XIAO H F,HUANG B,YAO G,et al.Atomistic simulation of the coupled adsorption and unfolding of protein GB1 on the polystyrenes nanoparticle surface [J].Science China Physics,Mechanics & Astronomy,2018,61(3):038711-1-9.
[15] ZUO G,KANG S G,XIU P,et al.Interactions between proteins and carbon-based nanoparticles:Exploring the origin of nanotoxicity at the molecular level [J].Small,2013,9(9/10):1546-1556.
[16] EISENHABER F,PERSSON B,ARGOS P.Protein structure prediction:recognition of primary,secondary,and tertiary structural features from amino acid sequence [J].Critical Reviews in Biochemistry and Molecular Biology,1995,30(1):1-94.
[17] PHILLIPS J C,BRAUN R,WANG W,et al.Scalable molecular dynamics with NAMD [J].Journal of Computational Chemistry,2005,26(16):1781-1802.
[18] FELLER S E,ZHANG Y,PASTOR R W,et al.Constant pressure molecular dynamics simulation:The Langevin piston method [J].Journal of Chemical Physics,1995,103(11):4613-4621.
[19] MARTYNA G J.Constant pressure molecular dynamics algorithms [J].Journal of Chemical Physics,1998,101(5):4177-4189.
基本信息:
DOI:
中图分类号:TB383.1;O629.73;O643.12
引用信息:
[1]游乐,姜舟婷.金纳米颗粒作用下全α型蛋白质构象转变过程研究[J].中国计量大学学报,2019,30(04):499-505.
基金信息:
国家自然科学基金项目(No.21873087)