nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 03, v.34 478-484+494
氨基酸带电量及分布对蛋白质单链自组装行为的影响
基金项目(Foundation): 国家自然科学基金项目(No.21873087)
邮箱(Email): z.jiang@cjlu.edu.cn;
DOI:
摘要:

目的:研究氨基酸的带电量及分布对蛋白质单链自组装行为的影响。方法:利用LAMMPS软件构建不同带电量及电荷分布的蛋白质模型,采用分子动力学对体系进行模拟。结果:体系静电势能和范德华能随氨基酸带电荷情况(带电荷量与同极性带电荷氨基酸连续数目)呈相反的变化趋势,体系静电势能绝对值远大于键能和范德华能,并且总势能的变化趋势与静电势能变化趋势一致,说明静电相互作用在非键相互作用中起主导作用。从模型的回转半径分析易得同极性电荷氨基酸连续数较小时,蛋白质结构的松散程度与单个氨基酸带电荷量大小呈正相关。结论:组成蛋白质氨基酸的带电量和电荷分布体现了静电相互作用强度及连续性,它们对蛋白质链的结构都有直接影响。这些研究成果为更好地理解蛋白质在不同静电作用下的结构特征及转变行为提供了理论依据。

Abstract:

Aims: This paper aims to study the effect of the charge and its distribution of amino acids on the single chain self-assembly behavior of proteins. Methods: The protein models with different charge and charge distribution were constructed by LAMMPS software; and the system was simulated by molecular dynamics. Results: The electrostatic potential energy and van der Waals of the system had opposite changing trends with the charge of amino acids(the amount of charge and the continuous number of amino acids with the same polarity of charge). The absolute value of the electrostatic potential energy of the system was much greater than the bond energy and van der Waals energy; and the changing trend of the total potential energy was consistent with that of the electrostatic potential energy, indicating that the electrostatic interaction played a leading role in the non-bond interaction. From the analysis of the rotation radius of the model, it was easy to find that the continuity number of amino acids with the same polarity charge was small and the looseness of the protein structure was positively correlated with the charge amount of a single amino acid. Conclusions: The electric quantity and charge distribution of amino acids in proteins reflect the strength and continuity of electrostatic interaction, which have a direct impact on the structure of protein chains. These results provide a theoretical basis for better understanding the structural characteristics and transformation behavior of proteins under different electrostatic interactions.

参考文献

[1] AINIS W N,BOIRE A,SOLE-JAMAULT V,et al.Contrasting assemblies of oppositely charged proteins[J].Langmuir,2019,35(30):9923-9933.

[2] HOPPE T.A simplified representation of anisotropic charge distributions within proteins[J].The Journal of Chemical Physics,2013,138(17):174110-174110.

[3] ZHOU H X,PANG X.Electrostatic interactions in protein structure,folding,binding,and condensation[J].Chemical Reviews,2018,118(4):1691-1741.

[4] GRIMME S.Density functional theory with London dispersion corrections[J].Wiley Interdisciplinary Reviews Computational Molecular Science,2011,1(2):211-228.

[5] GRANT M L.Nonuniform charge effects in protein-protein interactions[J].The Journal of Physical Chemistry B,2001,105(14):2858-2863.

[6] HAGITA K,FUJIWARA S.Single-chain folding of a quenched isotactic polypropylene chain through united atom molecular dynamics simulations[J].Polymer,2019,183:121861-121861.

[7] WHITESIDES G M.Self-Assembly at all scales[J].Science,2002,295(5564):2418-2421.

[8] TOMADONI B,CAPELLO C,VALENCIA G A,et al.Self-assembled proteins for food applications:A review[J].Trends in Food Science & Technology,2020,101:1-16.

[9] 游乐,姜舟婷.金纳米颗粒作用下全α型蛋白质构象转变过程研究[J].中国计量大学学报,2019,30(4):499-505.YOU L,JIANG Z T.Effect of Au-nanoparticles on the conformational transition of all-α protein[J].Journal of China University of Metrology,2019,30(4):499-505.

[10] ANFINSEN C B.Principles that govern the folding of protein chains[J].Science,1973,181(4096):223-230.

[11] DAHAL Y R,DE LA CRUZ M O.Controlling protein adsorption modes electrostatically[J].Soft Matter,2020,16(22):5224-5232.

[12] ADESINA A S,SWIDEREK K,LUK L Y P,et al.Electric field measurements reveal the pivotal role of cofactor-substrate interaction in dihydrofolate reductase catalysis[J].ACS catalysis,2020,10(14):7907-7914.

[13] TSAI M Y,ZHENG W,BALAMURUGAN D,et al.Electrostatics,structure prediction,and the energy landscapes for protein folding and binding[J].Protein Science,2016,25(1):255-269.

[14] PIZZITUTTI F,MARCHI M,BORGIS D.Coarse-graining the accessible surface and the electrostatics of proteins for protein?protein interactions[J].Journal of Chemical Theory and Computation,2007,3(5):1867-1876.

[15] BERGER B.Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete[J].Journal of Computational Biology,1998,5(1):27-40.

[16] EDORH S P A,REDON S.Incremental update of electrostatic interactions in adaptively restrained particle simulations[J].Journal of Computational Chemistry,2018,39(20):1455-1469.

[17] FORD A G,CAO X Z,PAPANIKOLAAS M J,et al.Molecular dynamics simulations to explore the structure and rheological properties of normal and hyperconcentrated airway mucus[J].Studies in Applied Mathematics,2021,147(4):1369-1387.

[18] FUKUGITA M,MITCHARD L M G.Kinematics and thermodynamics of a folding heteropolymer[J].Proceedings of the National Academy of Sciences of the United States of America,1993,90(13):6365-6368.

[19] WANG W,XU W X,LEVY Y,et al.Confinement effects on the kinetics and thermodynamics of protein dimerization[J].Proceedings of the National Academy of Sciences,2009,106(14):5517-5522.

[20] 姜舟婷,章林溪,陈进,等.弹性竿模型下超螺旋DNA分子的构象研究[J].高分子学报,2003(2):207-210.JIANG Z T,ZHANG L X,CHEN J,et al.A study on conformations of DNA chain under the elastic rod model[J].Acta Polymerica Sinica,2003(2):207-210.

[21] 姜舟婷,孙婷婷,王亚楠,等.全α蛋白质体系能量转变的分子动力学模拟[J].高分子学报,2014(1):80-87.JIANG Z T,SUN T T,WANG Y N,et al.A study on the energy transition of all-α proteins by molecular dynamics simulation[J].Acta Polymerica Sinica,2014(1):80-87.

[22] MAYO S L,OLAFSON B D,GODDARD W A.DREIDING:A generic force field for molecular simulations[J].Journal of Physical Chemistry,1990,94(26):8897-8909.

[23] JIANG Z,XU P,SUN T.A study on the structural transition of a single polymer chain by parallel tempering molecular dynamics simulation[J].Chinese Journal of Polymer Science,2012,30(1):45-55.

[24] JIANG Z,DOU W,SUN T,et al.Effects of chain flexibility on the conformational behavior of a single polymer chain[J].Journal of Polymer Research,2015,22(12):1-9.

基本信息:

DOI:

中图分类号:O629.73

引用信息:

[1]俞志超,姜舟婷.氨基酸带电量及分布对蛋白质单链自组装行为的影响[J].中国计量大学学报,2023,34(03):478-484+494.

基金信息:

国家自然科学基金项目(No.21873087)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文