nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2024 02 v.35 222-232
基于T-S模糊建模的气动肌肉拮抗关节预测角度控制
基金项目(Foundation): 浙江省重点研发计划项目(No.2023C03186)
邮箱(Email): wangbrpaper@163.com;
DOI:
中文作者单位:

中国计量大学机电工程学院;

摘要(Abstract):

目的:为了提升气动肌肉拮抗关节的控制精度。方法:提出了一种用于气动肌肉拮抗关节角度跟踪的T-S模糊模型预测控制方法。建立了拮抗关节的T-S模糊模型,并对模型进行了离散化处理;基于离散后的T-S模糊模型,设计了拮抗关节的模型预测控制器,通过特征值法验证了系统的稳定性。结果:仿真实验表明,T-S模糊模型预测控制器跟踪±15°和±10°的角度时,相对于传统模型预测控制,平均绝对误差分别降低了29.05%和44.11%。结论:设计的T-S模糊模型预测控制器提高了气动肌肉拮抗关节的控制精度。

关键词(KeyWords): 气动肌肉拮抗关节;T-S模糊模型;模型预测控制
参考文献

[1] PASCALI C D,NASELLI G A,PALAGI S,et al.3D-printed biomimetic artificial muscles using soft actuators that contract and elongate[J].Science Robotics,2022,7(68):1-8.

[2] LEE J G,RODRIGUE H.Armor-based stable force pneumatic artificial muscles for steady actuation properties[J].Soft Robotics,2022,9(3):413-424.

[3] WANG X Y,YU N B,HAN J D,et al.Modeling and robust control for tendon-sheath artificial muscle system twist with time-varying parameters and input constraints:an exploratory research[J].IEEE Transactions on Industrial Electronics,2023,70(1):878-887.

[4] ZHAO L,CHENG H Y,XIA Y Q,et al.Angle tracking adaptive backstepping control for a mechanism of pneumatic muscle actuators via an AESO[J].IEEE Transactions on Industrial Electronics,2019,66(6):4566-4576.

[5] DANG B X,TRUONG Q D,KYOUNG K A.An integrated intelligent nonlinear control method for a pneumatic artificial muscle[J].IEEE/ASME Transactions on Mechatronics,2016,21(4):1835-1845.

[6] QIN Y,ZHANG H,WANG X,et al.Active model-based hysteresis compensation and tracking control of pneumatic artificial muscle[J].Sensors,2022,22(1):364.

[7] KIM W J,PARK H,KIM J.Compact flat fabric pneumatic artificial muscle (ffPAM) for soft wearable robotic devices[J].IEEE Robotics and Automation Letters,2021,6(2):2603-2610.

[8] NUCHKRUA T,LEEPHAKREEDA T.Fuzzy self-tuning PID control of hydrogen-driven pneumatic artifificial muscle actuator[J].Journal of Bionic Engineering,2013,10(3):329-340.

[9] LILLY J H,YANG L.Sliding mode tracking for pneumatic muscle actuators in opposing pair confifiguration[J].IEEE Transactions on Control Systems Technology,2005,13(4):550-558.

[10] WU J,HUANG J,WANG Y,et al.Nonlinear disturbance observer based dynamic surface control for trajectory tracking of pneumatic muscle system[J].IEEE Transactions on Control Systems Technology,2014,22(2):440-455.

[11] XI Y,LI D,LIN S.Model predictive control-status and challenges[J].Acta Automatica Sinica,2013,39(3):222-236.

[12] PAN G,FAULWASSER T.NMPC in active subspaces:Dimensionality reduction with recursive feasibility guarantees[J].Automatica,2023,147:110708.

[13] HUANG L B,ZHEN J Z,LYGEROS J,et al.Robust data-enabled predictive control:Tractable formulations and performance guarantees[J].IEEE Transactions on Automatic Control,2023,68(5):3163-3170.

[14] CHEN S W,WANG T Y,ATANASOV N,et al.Large scale model predictive control with neural networks and primal active sets[J].Automatica,2022,135:109947.

[15] TERZI E,FARINA M,FAGIANO L,et al.Robust multi-rate predictive control using multi-step prediction models learned from data[J].Automatica,2022,136:109852.

[16] HUANG J,CAO Y,XIONG C H,et al.An echo state gaussian process-based nonlinear model predictive control for pneumatic muscle actuators[J].IEEE Transactions on Automation Science and Engineering,2019,16(3):1071-1084.

[17] WANG J J,XU B G,LAI J W,et al.An improved koopman-MPC framework for data-driven modeling and control of soft actuators[J].IEEE Robotics and Automation Letters,2023,8(2):616-623.

[18] CAO Y,HUANG J,XIONG C H.Single-layer learning-based predictive control with echo state network for pneumatic-muscle-actuators-driven exoskeleton[J].IEEE Transactions on Cognitive and Developmental Systems,2021,13(1):80-90.

[19] ZHANG C L,WEI F,WAN X B.Model predictive control for interval type-2 T-S fuzzy systems under new dynamic event-triggered mechanism[C]//2022 41st Chinese Control Chinese Conference(CCC).Hefei:IEEE,2022,4448-4453.

[20] CHENG L,LIU W C,HOU Z G,et al.An adaptive takagi-sugeno fuzzy model-based predictive controller for piezoelectric actuators[J].IEEE Transactions on Industrial Electronics,2017,64(4):3048-3058.

[21] PING X B,PEDRYCZ W.Output feedback model predictive control of interval type-2 T-S fuzzy system with bounded disturbance[J].IEEE Transactions on Fuzzy Systems,2022,28(1):148-162.

[22] CHENG L,LIU W C,HOU Z G,et al.An adaptive takagi-sugeno fuzzy model-based predictive controller for piezoelectric actuators[J].IEEE Transactions on Industrial Electronics,2016,64(4):3048-3058.

[23] XIA A Z,CHENG L.Adaptive takagi-sugeno fuzzy model and model predictive control of pneumatic artificial muscles[J].Science China Technological Sciences,2021,64(10):2272-2280.

[24] 陈诚,黄剑,刘磊,等.基于数据驱动的气动柔性关节T-S模糊系统建模与预测控制[J].控制理论与应用,2022,39(4):633-642.CHEN C,HUANG J,LIU L,et al.Data-driven T-S fuzzy system modeling and predictive control of a pneumatic flexible joint[J].Control Theory & Applications,2022,39(4):633-642.

[25] CHEN C,HUANG J,WU D R,et al.Interval type-2 fuzzy disturbance observer based T-S fuzzy control for a pneumatic flexible joint[J].IEEE Transactions on Industrial Electronics,2022,69(6):5962-5972.

[26] ZHOU K,SUN X Y,YU R,et al.Pneumatic artificial muscle antagonistic joint trajectory tracking using adaptive explicit model predictive control[C]//2022 2nd International Conference on Computers and Automation (CompAuto).Paris:IEEE,2022:48-55.

基本信息:

DOI:

中图分类号:R318;TP242

引用信息:

[1]张传强,周坤,崔小红等.基于T-S模糊建模的气动肌肉拮抗关节预测角度控制[J].中国计量大学学报,2024,35(02):222-232.

基金信息:

浙江省重点研发计划项目(No.2023C03186)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文