2024 03 v.35 363-373
磷酸化肽段分离富集方法的研究进展
基金项目(Foundation):
国家重点研发计划项目(No.2022YFF0608400);
国家自然科学基金项目(No.21927812);
中国计量科学研究院基本科研业务费项目(No.AKY1955,AKY1941,AKY1942)
邮箱(Email):
yxp@cjlu.edu.cn;zhairui@nim.ac.cn;;
DOI:
中文作者单位:
中国计量大学生命科学学院浙江省生物计量及检验检疫技术重点实验室;中国计量科学研究院前沿计量科学中心国家市场监管技术创新中心(质谱);
摘要(Abstract):
目的:通过综述O-磷酸化肽段和N-磷酸化肽段的富集方法研究进展,为磷酸化蛋白质分析前处理提供解决方案。方法:结合文献和数据库搜索,总结O-磷酸化肽段和N-磷酸化肽段的富集方法基本原理与应用,系统介绍O-磷酸化肽段和N-磷酸化肽段的富集方法研究进展。结果:磷酸化肽段分离富集方法已被广泛应用于磷酸化蛋白质组学研究中。结论:目前已开发了多种针对不同磷酸化肽段的富集方法,不同的方法具有不同的特异性和选择性,因此,根据研究目的选择富集方法尤为重要。
关键词(KeyWords):
磷酸化肽段;磷酸化肽段富集方法;质谱技术
204 | 0 | 192 |
下载次数 | 被引频次 | 阅读次数 |
参考文献
[1] MURAT S,BIGOT M,CHAPRON J,et al.5-HT2A receptor-dependent phosphorylation of mGlu2 receptor at Serine 843 promotes mGlu2 receptor-operated Gi/o signaling[J].Molecular Psychiatry,2019,24(11):1610-1626.
[2] THORNER J,HUNTER T,CANTLEY L C,et al.Signal transduction:From the atomic age to the post-genomic era[J].Cold Spring Harbor Perspectives in Biology,2014,6(12):a022913.
[3] TEPPER K,BIERNAT J,KUMAR S,et al.Oligomer formation of tau protein hyperphosphorylated in cells[J].The Journal of Biological Chemistry,2014,289(49):34389-34407.
[4] WISEMAN R L,KELLY J W.Cell biology.Phosphatase inhibition delays translational recovery[J].Science,2011,332(6025):44-45.
[5] LOW T Y,MOHTAR M A,LEE P Y,et al.Widening the bottleneck of phosphoproteomics:Evolving strategies for phosphopeptide enrichment[J].Mass Spectrometry Reviews,2021,40(4):309-333.
[6] BUCHOWIECKA A K.Puzzling over protein cysteine phosphorylation—assessment of proteomic tools for S-phosphorylation profiling[J].Analyst,2014,139(17):4118-4123.
[7] BERTRAN-VICENTE J,PENKERT M,NIETO-GARCIA O,et al.Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides[J].Nature Communications,2016,7:12703.
[8] VYSE S,DESMOND H,HUANG P H.Advances in mass spectrometry based strategies to study receptor tyrosine kinases[J].IUCrJ,2017,4:119-130.
[9] RILEY N M,COON J J.Phosphoproteomics in the age of rapid and deep proteome profiling[J].Analytical Chemistry,2016,88(1):74-94.
[10] CHAN C Y,GRITSENKO M A,SMITH R D,et al.The current state of the art of quantitative phosphoproteomics and its applications to diabetes research[J].Expert Rev Proteomics,2016,13(4):421-433.
[11] HUNTER T.The croonian lecture 1997.The phosphorylation of proteins on tyrosine:Its role in cell growth and disease[J].Philosophical Transactions of The Royal Society B-Biological Sciences,1998,353(1368):583-605.
[12] PORATH J,CARLSSON J,OLSSON I,et al.Metal chelate affinity chromatography,a new approach to protein fractionation[J].Nature,1975,258(5536):598-599.
[13] FICARRO S B,MCCLELAND M L,STUKENBERG P T,et al.Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae[J].Nature Biotechnology,2002,20(3):301-305.
[14] FICARRO S,CHERTIHIN O,WESTBROOK V A,et al.Phosphoproteome analysis of capacitated human sperm:Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation[J].Journal of Biological Chemistry,2003,278(13):11579-11589.
[15] KATRIN M,FOREST M W.Phosphoproteomic analysis of rat liver by high capacity IMAC and LCMS/MS[J].Journal of Proteome Research,2006,5(1):98-104.
[16] BENJAMIN R,HEINER K,GUILLAUME M,et al.Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns[J].Molecular & Cellular Proteomics,2015,14(1):205-215.
[17] RAVI A,GUO S,RASALA B,et al.Separation options for phosphorylated osteopontin from transgenic microalgae chlamydomonas reinhardtii supplementary data[J].International Journal of Molecular Sciences,2018,19(2):585.
[18] POSEWITZ M C,TEMPST P.Immobilized gallium(Ⅲ) affinity chromatography of phosphopeptides[J].Analytical Chemistry,1999,71(14):2883-2892.
[19] YAO Y,DONG J,DONG M,et al.An immobilized titanium (IV) ion affinity chromatography adsorbent for solid phase extraction of phosphopeptides for phosphoproteome analysis[J].Journal of Chromatography A,2017,1498:22-28.
[20] ZHOU H,YE M,DONG J,et al.Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography[J].Nature Protocols,2013,8(3):461-480.
[21] RUPRECHT B,KOCH H,DOMASINSKA P,et al.Optimized enrichment of phosphoproteomes by Fe-IMAC column chromatography[J].Methods in Molecular Biology,2017,1550:47-60.
[22] DIEZ I A,GOVENDER I,NAICKER P,et al.Zirconium(IV)-IMAC revisited:Improved performance and phosphoproteome coverage by magnetic microparticles for phosphopeptide affinity enrichment[J].Journal of Proteome Research,2021,20(1):453-462.
[23] ADAMS M,FLEMING J R,RIEHLE E,et al.Scalable,non-denaturing purification of phosphoproteins using Ga3+-IMAC:N2A and M1M2 titin components as study case[J].The Protein Journal,2019,38(2):181-189.
[24] TSAI C F,HSU C C,HUNG J N,et al.Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography[J].Analytical Chemistry,2014,86(1):685.
[25] RUPRECHT B,KOCH H,MEDARD G,et al.Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns[J].Molecular & Cellular Proteomics Mcp,2015,14(1):205.
[26] KANSHIN E,MICHNICK S W,THIBAULT P.Displacement of N/Q-rich peptides on TiO2 beads enhances the depth and coverage of yeast phosphoproteome analyses[J].Journal of Proteome Research,2013,12(6):2905.
[27] ARYAL U K,ROSS A R S.Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry[J].Rapid Communications in Mass Spectrometry,2010,24(2):219-231.
[28] PINKSE M W H,UITTO P M,HILHORST M J,et al.Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns[J].Analytical Chemistry,2004,76(14):3935-3943.
[29] LEITNER A,SAKEYE M,ZIMMERLI C E,et al.Insights into chemoselectivity principles in metal oxide affinity chromatography using tailored nanocast metal oxide microspheres and mass spectrometry-based phosphoproteomics[J].Analyst,2017,142(11):1993-2003.
[30] ZHAO S,WANG S,YAN Y,et al.GO-META-TiO2 composite monolithic columns for in-tube solid-phase microextraction of phosphopeptides[J].Talanta,2019,192:360-367.
[31] LUO B,YAN S,ZHANG H,et al.Metal-organic framework-derived hollow and hierarchical porous multivariate metal-oxide microspheres for efficient phosphoproteomics analysis[J].ACS Applied Materials & Interfaces,2021,13(29):34762-34772.
[32] LOW T Y,MOHTAR M A,LEE P Y,et al.Widening the bottleneck of phosphoproteomics:Evolving strategies for phosphopeptide enrichment[J].Mass Spectrometry Reviews,2021,40(4):309-333.
[33] BEAUSOLEIL S A,JEDRYCHOWSKI M,SCHWARTZ D,et al.Large-scale characterization of HeLa cell nuclear phosphoproteins[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(33):12130-12135.
[34] SHEMA G,NGUYEN M T N,SOLARI F A,et al.Simple,scalable,and ultrasensitive tip-based identification of protease substrates[J].Molecular & Cellular Proteomics,2018,17(4):826-834.
[35] DEHGHANI A,G?DDERZ M,WINTER D.Tip-based fractionation of batch-enriched phosphopeptides facilitates easy and robust phosphoproteome analysis[J].Journal of Proteome Research,2018,17(1):46-54.
[36] HARDMAN G,PERKIN S,BROWNRIDGE P J,et al.Strong anion exchange-mediated phosphoproteomics reveals extensive human non-canonical phosphorylation[J].The EMBO Journal,2019,38(21):e100847.
[37] QUAN Q,FENG J,LUI L T,et al.Phosphoproteome of crab-eating macaque cerebral cortex characterized through multidimensional reversed-phase liquid chromatography/mass spectrometry with tandem anion/cation exchange columns[J].Journal of Chromatography A,2017,1498:196-206.
[38] YEH T T,HO M Y,CHEN W Y,et al.Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry[J].Analytical and Bioanalytical Chemistry,2019,411(15):3417-3424.
[39] ALPERT A J,HUDEC O,MECHTLER K.Anion-Exchange chromatography of phosphopeptides:Weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion-hydrophilic interaction chromatography[J].Analytical Chemistry,2015,87(9):4704-4711.
[40] LOROCH S,ZAHEDI R P,SICKMANN A.Highly sensitive phosphoproteomics by tailoring solid-phase extraction to electrostatic repulsion-hydrophilic interaction chromatography[J].Analytical Chemistry,2015,87(3):1596-1604.
[41] ALPERT A J.Effect of salts on retention in hydrophilic interaction chromatography[J].Journal of Chromatography A,2018,1538:45-53.
[42] CUI Y,TABANG D,ZHANG Z,et al.Counterion optimization dramatically improves selectivity for phosphopeptides and glycopeptides in electrostatic repulsion-hydrophilic interaction chromatography[J].Analytical Chemistry,2021,93(22):7908-7916.
[43] MIJIN J C V D,LABOTS M,PIERSMA S R,et al.Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics[J].Journal of Proteomics,2015,127:259-263.
[44] CONRADS T P,VEENSTRA T D.An enriched look at tyrosine phosphorylation[J].Nature Biotechnology,2005,23(1):36-37.
[45] BERGSTR?M L S,MOLIN M,SAVITSKI M M,et al.Immunoaffinity enrichments followed by mass spectrometric detection for studying global protein tyrosine phosphorylation[J].Journal of Proteome Research,2008,7(7):2897-2910.
[46] BOERSEMA P J,FOONG L Y,DING V M Y,et al.In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling[J].Molecular & Cellular Proteomics,2010,9(1):84-99.
[47] ARTEMENKO K A,LIND S B,ELFINEH L,et al.Optimization of immunoaffinity enrichment and detection:Toward a comprehensive characterization of the phosphotyrosine proteome of K562 cells by liquid chromatography-mass spectrometry[J].The Analyst,2011,136(9):1971-1978.
[48] LOMBARDI B,RENDELL N,EDWARDS M,et al.Evaluation of phosphopeptide enrichment strategies for quantitative TMT analysis of complex network dynamics in cancer-associated cell signalling[J].EuPA Open Proteomics,2015,6:10-15.
[49] POSSEMATO A P,PAULO J A,MULHERN D,et al.Multiplexed phosphoproteomic profiling using titanium dioxide and immunoaffinity enrichments reveals complementary phosphorylation events[J].Journal of Proteome Research,2017,16(4):1506-1514.
[50] KANEKO T,HUANG H,CAO X,et al.Superbinder SH2 domains act as antagonists of cell signaling[J].Science Signaling,2012,5(243):ra68.
[51] BIAN Y,LI L,DONG M,et al.Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder[J].Nature Chemical Biology,2016,12(11):959-966.
[52] LIU X,DONG M,YAO Y,et al.A tyrosine phosphoproteome analysis approach enabled by selective dephosphorylation with protein tyrosine phosphatase[J].Analytical Chemistry,2022,94(10):4155-4164.
[53] 胡晔晨,江波,张丽华,等.N-磷酸化修饰蛋白质的富集和鉴定方法[J].色谱,2020,38(3):278-286.HU Y C,JIANG B,ZHANG L H,et al.Advances in enrichment and detection methods for N-phosphorylated proteins[J].Chinese Journal of Chromatography,2020,38(3):278-286.
[54] MAKWANA M V,MUIMO R,JACKSON R F.Advances in development of new tools for the study of phosphohistidine[J].Laboratory Investigation,2018,98(3):291-303.
[55] FUHRMANN J,SUBRAMANIAN V,THOMPSON P R.Synthesis and use of a phosphonate amidine to generate an anti-phosphoarginine-specific antibody[J].Angewandte Chemie,2015,54(49):14715-14718.
[56] HU Y,ZHANG Y,WENG Y,et al.Isolation and identification of phosphorylated lysine peptides by retention time difference combining dimethyl labeling strategy[J].Science China Chemistry,2019,62(6):5.
[57] HU Y,LI Y,GAO H,et al.Cleavable hydrophobic derivatization strategy for enrichment and identification of phosphorylated lysine peptides[J].Analytical and Bioanalytical Chemistry,2019,411(18):4159-4166.
[58] HU Y,JIANG B,WEN Y,et al.Bis(zinc(Ⅱ)-dipicolylamine)-functionalized sub-2 μm core-shell microspheres for the analysis of N-phosphoproteome[J].Nature Communications,2020,11(1):6226.
[59] HU Y,JIANG B.Selective enrichment tandem β-elimination assisted strategy for N-phosphorylation analysis[J].Talanta,2022,247:123580.
[60] CUI F,QIAN X,YING W.Integrated strategy for unbiased profiling of the histidine phosphoproteome[J].Analytical Chemistry,2021,93(47):15584-15589.
[61] INCEL A,ARRIBAS DíEZ I,WIERZBICKA C,et al.Selective enrichment of histidine phosphorylated peptides using molecularly imprinted polymers[J].Analytical Chemistry,2021,93(8):3857-3866.
[62] YU Q,LI X S,YUAN B F,et al.Preparation of magnetic hydroxyapatite clusters and their application in the enrichment of phosphopeptides[J].Journal of Separation Science,2014,37(5):580-586.
[63] PINK M,VERMA N,POLATO F,et al.Precipitation by lanthanum ions:A straightforward approach to isolating phosphoproteins[J].Journal of Proteomics,2011,75(2):375-383.
[64] LIN H,YUAN K,DENG C.Preparation of a TiO2-NH2modified MALDI plate for on-plate simultaneous enrichment of phosphopeptides and glycopeptides[J].Talanta,2017,175:427-434.
[65] CHEN D,LUDWIG K R,KROKHIN O V,et al.Capillary zone electrophoresis-tandem mass spectrometry for large-scale phosphoproteomics with the production of over 11 000 phosphopeptides from the colon carcinoma HCT116 cell line[J].Analytical Chemistry,2019,91(3):2201-2208.
[66] TRINIDAD J C,SPECHT C G,THALHAMMER A,et al.Comprehensive identification of phosphorylation sites in postsynaptic density preparations[J].Molecular & Cellular Proteomics:MCP,2006,5(5):914-922.
[67] CHEN D,LUDWIG K R,KROKHIN O V,et al.Capillary zone electrophoresis-tandem mass spectrometry for large-scale phosphoproteomics with the production of over 11,000 phosphopeptides from the colon carcinoma HCT116 cell line[J].Analytical Chemistry,2019,91(3):2201-2208.
[68] LIN H,DENG C.Development of immobilized Sn(4+) affinity chromatography material for highly selective enrichment of phosphopeptides[J].Proteomics,2016,16(21):2733-2741.
[69] YANG D S,DING X Y,MIN H P,et al.Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment[J].Journal of Chromatography A,2017,1505:56-62.
[2] THORNER J,HUNTER T,CANTLEY L C,et al.Signal transduction:From the atomic age to the post-genomic era[J].Cold Spring Harbor Perspectives in Biology,2014,6(12):a022913.
[3] TEPPER K,BIERNAT J,KUMAR S,et al.Oligomer formation of tau protein hyperphosphorylated in cells[J].The Journal of Biological Chemistry,2014,289(49):34389-34407.
[4] WISEMAN R L,KELLY J W.Cell biology.Phosphatase inhibition delays translational recovery[J].Science,2011,332(6025):44-45.
[5] LOW T Y,MOHTAR M A,LEE P Y,et al.Widening the bottleneck of phosphoproteomics:Evolving strategies for phosphopeptide enrichment[J].Mass Spectrometry Reviews,2021,40(4):309-333.
[6] BUCHOWIECKA A K.Puzzling over protein cysteine phosphorylation—assessment of proteomic tools for S-phosphorylation profiling[J].Analyst,2014,139(17):4118-4123.
[7] BERTRAN-VICENTE J,PENKERT M,NIETO-GARCIA O,et al.Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides[J].Nature Communications,2016,7:12703.
[8] VYSE S,DESMOND H,HUANG P H.Advances in mass spectrometry based strategies to study receptor tyrosine kinases[J].IUCrJ,2017,4:119-130.
[9] RILEY N M,COON J J.Phosphoproteomics in the age of rapid and deep proteome profiling[J].Analytical Chemistry,2016,88(1):74-94.
[10] CHAN C Y,GRITSENKO M A,SMITH R D,et al.The current state of the art of quantitative phosphoproteomics and its applications to diabetes research[J].Expert Rev Proteomics,2016,13(4):421-433.
[11] HUNTER T.The croonian lecture 1997.The phosphorylation of proteins on tyrosine:Its role in cell growth and disease[J].Philosophical Transactions of The Royal Society B-Biological Sciences,1998,353(1368):583-605.
[12] PORATH J,CARLSSON J,OLSSON I,et al.Metal chelate affinity chromatography,a new approach to protein fractionation[J].Nature,1975,258(5536):598-599.
[13] FICARRO S B,MCCLELAND M L,STUKENBERG P T,et al.Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae[J].Nature Biotechnology,2002,20(3):301-305.
[14] FICARRO S,CHERTIHIN O,WESTBROOK V A,et al.Phosphoproteome analysis of capacitated human sperm:Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation[J].Journal of Biological Chemistry,2003,278(13):11579-11589.
[15] KATRIN M,FOREST M W.Phosphoproteomic analysis of rat liver by high capacity IMAC and LCMS/MS[J].Journal of Proteome Research,2006,5(1):98-104.
[16] BENJAMIN R,HEINER K,GUILLAUME M,et al.Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns[J].Molecular & Cellular Proteomics,2015,14(1):205-215.
[17] RAVI A,GUO S,RASALA B,et al.Separation options for phosphorylated osteopontin from transgenic microalgae chlamydomonas reinhardtii supplementary data[J].International Journal of Molecular Sciences,2018,19(2):585.
[18] POSEWITZ M C,TEMPST P.Immobilized gallium(Ⅲ) affinity chromatography of phosphopeptides[J].Analytical Chemistry,1999,71(14):2883-2892.
[19] YAO Y,DONG J,DONG M,et al.An immobilized titanium (IV) ion affinity chromatography adsorbent for solid phase extraction of phosphopeptides for phosphoproteome analysis[J].Journal of Chromatography A,2017,1498:22-28.
[20] ZHOU H,YE M,DONG J,et al.Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography[J].Nature Protocols,2013,8(3):461-480.
[21] RUPRECHT B,KOCH H,DOMASINSKA P,et al.Optimized enrichment of phosphoproteomes by Fe-IMAC column chromatography[J].Methods in Molecular Biology,2017,1550:47-60.
[22] DIEZ I A,GOVENDER I,NAICKER P,et al.Zirconium(IV)-IMAC revisited:Improved performance and phosphoproteome coverage by magnetic microparticles for phosphopeptide affinity enrichment[J].Journal of Proteome Research,2021,20(1):453-462.
[23] ADAMS M,FLEMING J R,RIEHLE E,et al.Scalable,non-denaturing purification of phosphoproteins using Ga3+-IMAC:N2A and M1M2 titin components as study case[J].The Protein Journal,2019,38(2):181-189.
[24] TSAI C F,HSU C C,HUNG J N,et al.Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography[J].Analytical Chemistry,2014,86(1):685.
[25] RUPRECHT B,KOCH H,MEDARD G,et al.Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns[J].Molecular & Cellular Proteomics Mcp,2015,14(1):205.
[26] KANSHIN E,MICHNICK S W,THIBAULT P.Displacement of N/Q-rich peptides on TiO2 beads enhances the depth and coverage of yeast phosphoproteome analyses[J].Journal of Proteome Research,2013,12(6):2905.
[27] ARYAL U K,ROSS A R S.Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry[J].Rapid Communications in Mass Spectrometry,2010,24(2):219-231.
[28] PINKSE M W H,UITTO P M,HILHORST M J,et al.Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns[J].Analytical Chemistry,2004,76(14):3935-3943.
[29] LEITNER A,SAKEYE M,ZIMMERLI C E,et al.Insights into chemoselectivity principles in metal oxide affinity chromatography using tailored nanocast metal oxide microspheres and mass spectrometry-based phosphoproteomics[J].Analyst,2017,142(11):1993-2003.
[30] ZHAO S,WANG S,YAN Y,et al.GO-META-TiO2 composite monolithic columns for in-tube solid-phase microextraction of phosphopeptides[J].Talanta,2019,192:360-367.
[31] LUO B,YAN S,ZHANG H,et al.Metal-organic framework-derived hollow and hierarchical porous multivariate metal-oxide microspheres for efficient phosphoproteomics analysis[J].ACS Applied Materials & Interfaces,2021,13(29):34762-34772.
[32] LOW T Y,MOHTAR M A,LEE P Y,et al.Widening the bottleneck of phosphoproteomics:Evolving strategies for phosphopeptide enrichment[J].Mass Spectrometry Reviews,2021,40(4):309-333.
[33] BEAUSOLEIL S A,JEDRYCHOWSKI M,SCHWARTZ D,et al.Large-scale characterization of HeLa cell nuclear phosphoproteins[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(33):12130-12135.
[34] SHEMA G,NGUYEN M T N,SOLARI F A,et al.Simple,scalable,and ultrasensitive tip-based identification of protease substrates[J].Molecular & Cellular Proteomics,2018,17(4):826-834.
[35] DEHGHANI A,G?DDERZ M,WINTER D.Tip-based fractionation of batch-enriched phosphopeptides facilitates easy and robust phosphoproteome analysis[J].Journal of Proteome Research,2018,17(1):46-54.
[36] HARDMAN G,PERKIN S,BROWNRIDGE P J,et al.Strong anion exchange-mediated phosphoproteomics reveals extensive human non-canonical phosphorylation[J].The EMBO Journal,2019,38(21):e100847.
[37] QUAN Q,FENG J,LUI L T,et al.Phosphoproteome of crab-eating macaque cerebral cortex characterized through multidimensional reversed-phase liquid chromatography/mass spectrometry with tandem anion/cation exchange columns[J].Journal of Chromatography A,2017,1498:196-206.
[38] YEH T T,HO M Y,CHEN W Y,et al.Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry[J].Analytical and Bioanalytical Chemistry,2019,411(15):3417-3424.
[39] ALPERT A J,HUDEC O,MECHTLER K.Anion-Exchange chromatography of phosphopeptides:Weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion-hydrophilic interaction chromatography[J].Analytical Chemistry,2015,87(9):4704-4711.
[40] LOROCH S,ZAHEDI R P,SICKMANN A.Highly sensitive phosphoproteomics by tailoring solid-phase extraction to electrostatic repulsion-hydrophilic interaction chromatography[J].Analytical Chemistry,2015,87(3):1596-1604.
[41] ALPERT A J.Effect of salts on retention in hydrophilic interaction chromatography[J].Journal of Chromatography A,2018,1538:45-53.
[42] CUI Y,TABANG D,ZHANG Z,et al.Counterion optimization dramatically improves selectivity for phosphopeptides and glycopeptides in electrostatic repulsion-hydrophilic interaction chromatography[J].Analytical Chemistry,2021,93(22):7908-7916.
[43] MIJIN J C V D,LABOTS M,PIERSMA S R,et al.Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics[J].Journal of Proteomics,2015,127:259-263.
[44] CONRADS T P,VEENSTRA T D.An enriched look at tyrosine phosphorylation[J].Nature Biotechnology,2005,23(1):36-37.
[45] BERGSTR?M L S,MOLIN M,SAVITSKI M M,et al.Immunoaffinity enrichments followed by mass spectrometric detection for studying global protein tyrosine phosphorylation[J].Journal of Proteome Research,2008,7(7):2897-2910.
[46] BOERSEMA P J,FOONG L Y,DING V M Y,et al.In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling[J].Molecular & Cellular Proteomics,2010,9(1):84-99.
[47] ARTEMENKO K A,LIND S B,ELFINEH L,et al.Optimization of immunoaffinity enrichment and detection:Toward a comprehensive characterization of the phosphotyrosine proteome of K562 cells by liquid chromatography-mass spectrometry[J].The Analyst,2011,136(9):1971-1978.
[48] LOMBARDI B,RENDELL N,EDWARDS M,et al.Evaluation of phosphopeptide enrichment strategies for quantitative TMT analysis of complex network dynamics in cancer-associated cell signalling[J].EuPA Open Proteomics,2015,6:10-15.
[49] POSSEMATO A P,PAULO J A,MULHERN D,et al.Multiplexed phosphoproteomic profiling using titanium dioxide and immunoaffinity enrichments reveals complementary phosphorylation events[J].Journal of Proteome Research,2017,16(4):1506-1514.
[50] KANEKO T,HUANG H,CAO X,et al.Superbinder SH2 domains act as antagonists of cell signaling[J].Science Signaling,2012,5(243):ra68.
[51] BIAN Y,LI L,DONG M,et al.Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder[J].Nature Chemical Biology,2016,12(11):959-966.
[52] LIU X,DONG M,YAO Y,et al.A tyrosine phosphoproteome analysis approach enabled by selective dephosphorylation with protein tyrosine phosphatase[J].Analytical Chemistry,2022,94(10):4155-4164.
[53] 胡晔晨,江波,张丽华,等.N-磷酸化修饰蛋白质的富集和鉴定方法[J].色谱,2020,38(3):278-286.HU Y C,JIANG B,ZHANG L H,et al.Advances in enrichment and detection methods for N-phosphorylated proteins[J].Chinese Journal of Chromatography,2020,38(3):278-286.
[54] MAKWANA M V,MUIMO R,JACKSON R F.Advances in development of new tools for the study of phosphohistidine[J].Laboratory Investigation,2018,98(3):291-303.
[55] FUHRMANN J,SUBRAMANIAN V,THOMPSON P R.Synthesis and use of a phosphonate amidine to generate an anti-phosphoarginine-specific antibody[J].Angewandte Chemie,2015,54(49):14715-14718.
[56] HU Y,ZHANG Y,WENG Y,et al.Isolation and identification of phosphorylated lysine peptides by retention time difference combining dimethyl labeling strategy[J].Science China Chemistry,2019,62(6):5.
[57] HU Y,LI Y,GAO H,et al.Cleavable hydrophobic derivatization strategy for enrichment and identification of phosphorylated lysine peptides[J].Analytical and Bioanalytical Chemistry,2019,411(18):4159-4166.
[58] HU Y,JIANG B,WEN Y,et al.Bis(zinc(Ⅱ)-dipicolylamine)-functionalized sub-2 μm core-shell microspheres for the analysis of N-phosphoproteome[J].Nature Communications,2020,11(1):6226.
[59] HU Y,JIANG B.Selective enrichment tandem β-elimination assisted strategy for N-phosphorylation analysis[J].Talanta,2022,247:123580.
[60] CUI F,QIAN X,YING W.Integrated strategy for unbiased profiling of the histidine phosphoproteome[J].Analytical Chemistry,2021,93(47):15584-15589.
[61] INCEL A,ARRIBAS DíEZ I,WIERZBICKA C,et al.Selective enrichment of histidine phosphorylated peptides using molecularly imprinted polymers[J].Analytical Chemistry,2021,93(8):3857-3866.
[62] YU Q,LI X S,YUAN B F,et al.Preparation of magnetic hydroxyapatite clusters and their application in the enrichment of phosphopeptides[J].Journal of Separation Science,2014,37(5):580-586.
[63] PINK M,VERMA N,POLATO F,et al.Precipitation by lanthanum ions:A straightforward approach to isolating phosphoproteins[J].Journal of Proteomics,2011,75(2):375-383.
[64] LIN H,YUAN K,DENG C.Preparation of a TiO2-NH2modified MALDI plate for on-plate simultaneous enrichment of phosphopeptides and glycopeptides[J].Talanta,2017,175:427-434.
[65] CHEN D,LUDWIG K R,KROKHIN O V,et al.Capillary zone electrophoresis-tandem mass spectrometry for large-scale phosphoproteomics with the production of over 11 000 phosphopeptides from the colon carcinoma HCT116 cell line[J].Analytical Chemistry,2019,91(3):2201-2208.
[66] TRINIDAD J C,SPECHT C G,THALHAMMER A,et al.Comprehensive identification of phosphorylation sites in postsynaptic density preparations[J].Molecular & Cellular Proteomics:MCP,2006,5(5):914-922.
[67] CHEN D,LUDWIG K R,KROKHIN O V,et al.Capillary zone electrophoresis-tandem mass spectrometry for large-scale phosphoproteomics with the production of over 11,000 phosphopeptides from the colon carcinoma HCT116 cell line[J].Analytical Chemistry,2019,91(3):2201-2208.
[68] LIN H,DENG C.Development of immobilized Sn(4+) affinity chromatography material for highly selective enrichment of phosphopeptides[J].Proteomics,2016,16(21):2733-2741.
[69] YANG D S,DING X Y,MIN H P,et al.Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment[J].Journal of Chromatography A,2017,1505:56-62.
基本信息:
DOI:
中图分类号:Q503
引用信息:
[1]俞晓平,刘媛,翟睿等.磷酸化肽段分离富集方法的研究进展[J].中国计量大学学报,2024,35(03):363-373.
基金信息:
国家重点研发计划项目(No.2022YFF0608400); 国家自然科学基金项目(No.21927812); 中国计量科学研究院基本科研业务费项目(No.AKY1955,AKY1941,AKY1942)