2 | 0 | 10 |
下载次数 | 被引频次 | 阅读次数 |
目的:研究不同尺寸的圆柱形氧化锌纳米颗粒对蛋白质二氢脂酰胺脱氢酶(1BBL)及其突变体(N24D、D43N)构象的影响。方法:运用Gromacs软件模拟不同粒径的氧化锌纳米颗粒作用下,野生型蛋白质1BBL及其突变体(N24D、D43N)的动力学行为,并对各体系蛋白质的构象稳定性进行深入分析。结果:随着氧化锌纳米颗粒尺寸增大,复合体系中蛋白质1BBL及其突变体的结构稳定性呈下降趋势,具体表现为蛋白质内部氢键数量减少,回转半径增大,相应的二级结构发生改变;对比1BBL与其突变体N24D、D43N发现,蛋白质的结构稳定性随着蛋白质链带电氨基酸数目的增多而降低。结论:本研究为分析纳米颗粒影响下蛋白质的结构特性及其转化机制提供了理论支持,同时也为进一步拓展纳米颗粒在医学诊断、药物递送和基因治疗等领域的应用提供新的思路。
Abstract:Aims: This paper aims to investigate the effects of cylindrical ZnO nanoparticles with different sizes on the conformational changes of protein dihydrolipoamide dehydrogenase(1BBL) and its mutants. Methods: Gromacs software was used to simulate the dynamic behavior of the protein 1BBL and its mutants N24D or D43N with three different sizes of ZnO nanoparticles. The conformational stability of the proteins in each system was analyzed. Results: According to the simulation results, we concluded that the number of hydrogen bonds inside the protein decreased; and the radius of gyration, as well as the RMSD of the protein increased, indicating the weakening trend on structural stability of the protein systems with the influence of the size of nanoparticles. Comparison between 1BBL and its mutants revealed that the structural stability of the protein decreased significantly as the number of charged amino acids increased. Conclusions: This study not only gives theoretical support for the understanding of the structural properties and transformation mechanism of proteins with the influence of nanoparticles, but also provides a new idea on further application of nanoparticles in medical diagnosis, drug delivery and gene therapy.
[1] NIIKURA K,IYO N,MATSUO Y,et al.Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation[J].Applied Materials & Interfaces,2013,5(9):3900-3907.
[2] LIU R,GUO Y L,ODUSOTE G.Core shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier,catalyst support and carbon adsorbent[J].ACS Applied Materials & Interfaces,2013,5(18):9167-9171.
[3] CHO H Y,MAVI A,CHUENG S T D,et al.Tumor homing reactive oxygen species nanoparticle for enhanced cancer therapy[J].ACS Applied Materials & Interfaces,2019,11(27):26770-26779.
[4] MIESZAWSKA A J,MULDER W J M,FAYAD Z A,et al.Multifunctional gold nanoparticles for diagnosis and therapy of disease[J].Molecular Pharmaceutics,2013,10(3):831-847.
[5] ZENG C,SHANG W,LIANG X,et al.Cancer diagnosis and imaging-guided photothermal therapy using a dual-modality nanoparticle[J].ACS Applied Materials & Interfaces,2016,8(43):29232-29241.
[6] GEBAUER J S,MALISSEK M,SIMON S,et al.Impact of the nanoparticle-protein corona on colloidal stability and protein structure[J].Langmuir the ACS Journal of Surfaces & Colloids,2012,28(25):9673.
[7] MORTEZA,MAHMOUDI,ISEULT,et al.Protein-nanoparticle interactions:Opportunities and challenges[J].Chemical Reviews,2011,111(9):5610-5637.
[8] 许志珍,晏晓敏,张杰,等.纳米颗粒与蛋白质分子的相互作用[J].化学进展,2013,25(8):1383-1391.XU Z Z,YAN X M,ZHANG J,et al.Interaction between nanoparticles and protein molecules[J].Advances in Chemistry,2013,25(8):1383-1391.
[9] TAKAHASHI T,MIHARA H.Peptide and protein mimetics inhibiting amyloid β-peptide aggregation[J].Accounts of Chemical Research,2008,41(10):1309-1318.
[10] CHA S H,HONG J,MCGUFFIE M,et al.Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity[J].Acs Nano,2015,9(9):9097-9105.
[11] BAE S H,YU J,LEE T,et al.Protein food matrix-ZnO nanoparticle interactions affect protein conformation,but may not be biological responses[J].International Journal of Molecular Sciences,2018,19(12):3926.
[12] 左光宏.分子动力学模拟方法研究蛋白质与纳米颗粒的相互作用[J].科研信息化技术与应用,2011,2(5):63-71.ZUO G H.Study of interaction between protein and nanoparticles by molecular dynamics simulation[J].Research information Technology and Application,2011,2(5):63-71.
[13] HOSSEINZADEH G,MAGHARI A,FARNIA S M F,et al.Interaction mechanism of insulin with ZnO nanoparticles by replica exchange molecular dynamics simulation[J].Taylor & Francis,2018(14):3623-3635.
[14] RAHALI S,DAMOUS M,BELHOCINE Y,et al.Computational insights on the adsorption of glycine,methionine,tyrosine and phenylalanine on the zinc oxide nanocluster Zn12O12[J].Theoretical Chemistry Accounts,2024,143(2):1-11.
[15] ZUO G H,HUANG Q,WEI G,et al.Plugging into proteins:poisoning protein function by a hydrophobic nanoparticle[J].ACS Nano,2010,4(12):7508-7514.
[16] 游乐,姜舟婷.金纳米颗粒作用下全α型蛋白质构象转变过程研究[J].中国计量大学学报,2019,30(4):499-505.YOU L,JIANG Z T.Effect of Au-nanoparticles on the conformational transition of all-α protein[J].Journal of China University of Metrology,2019,30(4):499-505.
[17] CAROTHERS D J,PONS G,PATEL M S.Dihydro-lipoamide dehydrogenase:Functional simi-larities and divergent evolution of the pyridine nucleotide-disulfide oxidoreductases[J].Archives of Biochemistry and Biophysics,1989,268(2):409-425.
[18] VOET D,VOET J,PRATT C W.Fundamentals of Biochemistry:Life at the Molecular Level[M].3rd ed.New York:Wiley,2008:319-320.
[19] NELSON D L,COX M M.Lehninger Principles of Biochemistry[M].5th ed.New York:W.H.Freeman,2008:1102-1105.
[20] ABRAHAM M J,MURTOLA T,SCHULZ R,et al.GROMACS:High performance molecular simulations through multi-level parallelism from laptops to supercomputers[J].SoftwareX,2015,1(2):19-25.
[21] MELCHIONNA S,CICCOTTI G,HOLIAN B L.Constant pressure molecular dynamics algorithms-comment[J].The Journal of Chemical Physics,1996,105(1):346-347.
[22] KIM M,KIM E,LEE S,et al.New method for constant NPT molecular dynamics[J].Journal of Physical Chemistry A,2019,123(8):1689-1699.
基本信息:
DOI:
中图分类号:TB383.1;TQ925
引用信息:
[1]潘雨露,姜舟婷.ZnO纳米颗粒作用下二氢脂酰胺脱氢酶及其突变体的稳定性研究[J].中国计量大学学报,2025,36(02):262-268.
基金信息:
国家自然科学基金项目(No.21873087)