nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg qikanlogo popupnotification paper
2024 01 v.35;No.113 43-52
非均匀分布变节流孔直径静压气浮主轴承载能力与稳定性研究
基金项目(Foundation): 国家自然科学基金项目(No.51675198);; 浙江省自然科学基金重点项目(No.LZ23E050002,LZ23E060002);; 浙江省属高校基本科研业务费专项项目(No.2020YW29)
邮箱(Email): yuntangli@cjlu.edu.cn;
DOI:
中文作者单位:

中国计量大学机电工程学院;中国计量大学现代科技学院;

摘要(Abstract):

目的:研究节流孔分布和直径系数对主轴承载能力和稳定性的影响。方法:提出了非均匀分布变节流孔直径新型静压气浮主轴结构,采用有限差分结合线性小扰动法求解非稳态Reynolds方程计算主轴性能。结果:节流孔分布、节流孔直径系数、偏心率、供气压力和平均气膜厚度对主轴承载能力和稳定性有显著影响;偏心率为0.15、供气压力为0.6 MPa时,新型气浮主轴承载能力提高25%,节流孔直径系数为0.90~0.95时主轴承载能力最大。结论:偏心率越大,节流孔分布对主轴承载能力的影响越显著;相对于传统主轴,节流孔直径系数对新型主轴承载能力影响较小;气浮主轴承载能力随供气压力和偏心率增加而增大,随平均气膜厚度增大而减小;偏心率越小,节流孔非均匀分布提高主轴稳定性越显著,变节流孔直径有利于提高主轴临界涡动比,降低临界惯性力,增强主轴稳定性;增大平均气膜厚度有利于提高主轴稳定性;增加供气压力导致主轴临界惯性力增大,稳定性降低。

关键词(KeyWords): 静压气浮主轴;;有限差分法;;承载能力;;稳定性;;变节流孔直径
参考文献 [1] GAO Q,CHEN W Q,LU L H,et al.Aerostatic bearings design and analysis with the application to precision engineering:State-of-the-art and future perspectives[J].Tribology International,2019,135:1-17.
[2] 李一平,叶海天,曹立,等.基于K-L散度和TEO的滚动轴承故障频率识别方法[J].中国计量大学学报,2021,32(3):310-317.LI Y P,YE H T,CAO L,et al.Fault frequency identification method of rolling bearing based on K-L divergence and TEO[J].Journal of China University of Metrology,2021,32(3):310-317.
[3] 金榕舜,沈功田,王强,等.基于EMD和近似熵的大型观缆车滚动轴承声发射信号故障诊断[J].中国计量大学学报,2018,29(4):417-423.JIN R S,SHEN G T,WANG Q,et al.Fault diagnosis of acoustic emission signals for rolling bearings of large ferris wheels based on empirical mode decomposition and approximate entropy[J].Journal of China University of Metrology,2018,29(4):417-423.
[4] YANG D W,CHEN C H,YUAN K,et al.Influence of orifices on stability of rotor-aerostatic bearing system[J].Tribology International,2009,42(8):1206-1219.
[5] 卢志伟,张君安,刘波.多孔集成节流空气静压轴承数值计算与性能研究[J].兵工学报,2019,40(10):2151-2160.LU Z W,ZHANG J A,LIU B.Numerical calculation and performance study of aerostatic bearing with multi-hole integrated restrictor[J].Acta Armamentarii,2019,40(10):2151-2160.
[6] LAI T,PENG X Q,LIU J F,et al.Design optimization of high-precision aerostatic equipment based on orifice restriction[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2019,233(10):1-16.
[7] MIYATAKE M,YOSHIMOTO S.Numerical investigation of static and dynamic characteristics of aerostatic thrust bearings with small feed holes[J].Tribology International,2010,43(8):1353-1359.
[8] CHEN C H,TSAI T H,YANG D W,et al.The comparison in stability of rotor-aerostatic bearing system compensated by orifices and inherences[J].Tribology International,2010,43(8):1360-1373.
[9] GAO S Y,CHENG K,CHEN S J,et al.CFD based investigation on influence of orifice chamber shapes for the design of aerostatic thrust bearings at ultra-high speed spindles[J].Tribology International,2015,92:211-221.
[10] CUI H L,WANG Y,WANG B R,et al.Numerical simulation and experimental verification of the stiffness and stability of thrust pad aerostatic bearings[J].Chinese Journal of Mechanical Engineering,2018,31(2):186-197.
[11] XIAO H,LI W,ZHOU Z X,et al.Performance analysis of aerostatic journal micro-bearing and its application to high-speed precision micro-spindles[J].Tribology International,2018,120:476-490.
[12] 崔海龙,岳晓斌,张连新,等.基于数值模拟的小孔节流空气静压轴承静动态特性研究[J].机械工程学报,2016,52(9):116-121.CUI H L,YUE X B,ZHANG L X,et al.Static and dynamic characteristics of aerostatic bearing based on numerical simulation[J].Journal of Mechanical Engineering,2016,52(9):116-121.
[13] ZHANG J B,ZOU D L,TA N,et al.Numerical research of pressure depression in aerostatic thrust bearing with inherent orifice[J].Tribology International,2018,123:385-396.
[14] 王犇,王晓力,张小青,等.微小型涡轮发动机圆锥气体静压轴承的特性研究[J].北京理工大学学报,2016,36(3):221-225,288.WANG B,WANG X L,ZHANG X Q,et al.Study on the characteristics of the aerostatic conical bearing for micro turbine engines[J].Transactions of Beijing Institute of Technology,2016,36(3):221-225,288.
[15] CHEN D J,HUO C,CUI X X.Investigation the gas film in micro scale induced error on the performance of the aerostatic spindle in ultra-precision machining[J].Mechanical Systems and Signal Processing,2018,105:488-501.
[16] ISHIBASHI K,KONDO A,KAWADA S,et al.Static and dynamic characteristics of a downsized aerostatic circular thrust bearing with a single feed hole[J].Precision Engineering,2019,60:448-457.
[17] 贾晨辉,庞焕杰,邱明.球面螺旋槽动静压气体轴承的动态特性分析及稳定性预测[J].航空动力学报,2017,32(6):1400-1411.JIA C H,PANG H J,QIU M.Analysis of dynamic characteristics and stability prediction of spherical spiral groove hybrid gas bearings[J].Journal of Aerospace Power,2017,32(6):1400-1411.
[18] CHEN C H,YANG D W,KANG Y,et al.The influence of orifice restriction on the stability of rigid rotor-aerostatic bearing system[C]//Turbo Expo:Power for Land,Sea,and Air.Orlando:ASME,2009:909-917.
[19] 李运堂,廖佳文,王鹏峰,等.加工误差和形位误差对气浮主轴稳定性的影响[J].机床与液压,2023,51(8):15-24.LI Y T,LIAO J W,WANG P F,et al.Effect of manufacturing errors and journal misalignment on the stability of aerostatic spindle[J].Machine Tool and Hydraulics,2023,51(8):15-24.

基本信息:

DOI:

中图分类号:TH133.36

引用信息:

[1]高翔,李运堂,王鹏峰等.非均匀分布变节流孔直径静压气浮主轴承载能力与稳定性研究[J].中国计量大学学报,2024,35(01):43-52.

基金信息:

国家自然科学基金项目(No.51675198);; 浙江省自然科学基金重点项目(No.LZ23E050002,LZ23E060002);; 浙江省属高校基本科研业务费专项项目(No.2020YW29)

检 索 高级检索